There is growing evidence supporting the role of fibroblasts in all stages of atherosclerosis, from the initial phase to fibrous cap and plaque formation. In the arterial wall, as with macrophages and vascular smooth muscle cells, fibroblasts are exposed to a myriad of LDL lipids, including the lipid species formed during the oxidation of their polyunsaturated fatty acids of cholesteryl esters (PUFA-CEs). Recently, our group identified the final oxidation products of the PUFA-CEs, cholesteryl hemiesters (ChE), in tissues from cardiovascular disease patients.
View Article and Find Full Text PDFOxidation of PUFAs in LDLs trapped in the arterial intima plays a critical role in atherosclerosis. Though there have been many studies on the atherogenicity of oxidized derivatives of PUFA-esters of cholesterol, the effects of cholesteryl hemiesters (ChEs), the oxidation end products of these esters, have not been studied. Through lipidomics analyses, we identified and quantified two ChE types in the plasma of CVD patients and identified four ChE types in human endarterectomy specimens.
View Article and Find Full Text PDFA key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown.
View Article and Find Full Text PDFMyotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3' untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not.
View Article and Find Full Text PDFIn atherosclerotic lesions, vascular smooth muscle cells (VSMCs) represent half of the foam cell population, which is characterized by an aberrant accumulation of undigested lipids within lysosomes. Loss of lysosome function impacts VSMC homeostasis and disease progression. Understanding the molecular mechanisms underlying lysosome dysfunction in these cells is, therefore, crucial.
View Article and Find Full Text PDFBackground: Localized stress and cell death in chronic inflammatory diseases may release tissue-specific lipids into the circulation causing the blood plasma lipidome to reflect the type of inflammation. However, deep lipid profiles of major chronic inflammatory diseases have not been compared.
Methods: Plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory diseases, atherosclerosis-related vascular disease, including cardiovascular (CVD) and ischemic stroke (IS), and systemic lupus erythematosus (SLE), were screened by a top-down shotgun mass spectrometry-based analysis without liquid chromatographic separation and compared to each other and to age-matched controls.
Inflammatory bowel diseases (IBD) with chronic infiltration of immune cells in the gastrointestinal tract are common and largely incurable. The therapeutic targeting of IBD has been hampered by the complex causality of the disease, with environmental insults like cholesterol-enriched Western diets playing a critical role. To address this drug development challenge, we report an easy-to-handle dietary cholesterol-based assay that allows the screening of immune-modulatory therapeutics in transgenic zebrafish models.
View Article and Find Full Text PDFAtherosclerosis is a progressive insidious chronic disease that underlies most of the cardiovascular pathologies, including myocardial infarction and ischemic stroke. The malfunctioning of the lysosomal compartment has a central role in the etiology and pathogenesis of atherosclerosis. Lysosomes are the degradative organelles of mammalian cells and process endogenous and exogenous substrates in a very efficient manner.
View Article and Find Full Text PDFAlkaptonuria (AKU) is an ultra-rare disease caused by the deficient activity of homogentisate 1,2-dioxygenase enzyme, leading the accumulation of homogentisic acid (HGA) in connective tissues implicating the formation of a black pigmentation called "ochronosis." Although AKU is a multisystemic disease, the most affected tissue is the articular cartilage, which during the pathology appears to be highly damaged. In this study, a model of alkaptonuric chondrocytes and cartilage was realized to investigate the role of HGA in the alteration of the extracellular matrix (ECM).
View Article and Find Full Text PDFShotgun lipidomic analysis of 203 lipids in 13 lipid classes performed on blood plasma of donors who had just suffered an acute coronary syndrome (ACS, n = 74), or an ischemic stroke (IS, n = 21), or who suffer from stable angina pectoris (SAP, n = 78), and an age-matched control cohort (n = 52), showed some of the highest inter-lipid class correlations between cholesteryl esters (CE) and phosphatidylcholines (PC) sharing a common fatty acid. The concentration of lysophospatidylcholine (LPC) and ratios of concentrations of CE to free cholesterol (Chol) were also lower in the CVD cohorts than in the control cohort, indicating a deficient conversion of Chol to CE in the blood plasma in the CVD subjects. A non-equilibrium reaction quotient, Q', describing the global homeostasis of cholesterol as manifested in the blood plasma was shown to have a value in the CVD cohorts (Q' = 0.
View Article and Find Full Text PDFAtherosclerosis is a chronic inflammatory disease and a leading cause of human mortality. The lesional microenvironment contains a complex accumulation of variably oxidized lipids and cytokines. Infiltrating monocytes become polarized in response to these stimuli, resulting in a broad spectrum of macrophage phenotypes.
View Article and Find Full Text PDFErythrophagocytosis is a physiological process that aims to remove damaged red blood cells from the circulation in order to avoid hemolysis and uncontrolled liberation of iron. Many efforts have been made to understand heme trafficking inside macrophages, but little is known about the maturation of phagosomes containing different types of erythrophagocytic particles with different signals at their surfaces. Therefore, we performed a comparative study on the maturation of phagosomes containing three different models of red blood cells (RBC): aged/senescent, complement-opsonized, and IgG-opsonized.
View Article and Find Full Text PDFErythrophagocytosis, the phagocytic removal of damaged red blood cells (RBC), and subsequent phagolysosome biogenesis are important processes in iron/heme metabolism and homeostasis. Phagolysosome biogenesis implies the interaction of nascent phagosomes with endocytic compartments and also autophagy effectors. Here, we report that besides recruitment of microtubule-associated protein-1-light chain 3 (LC3), additional autophagy machinery such as sequestosome 1 (p62) is also acquired by single-membrane phagosomes at very early stages of the phagocytic process and that its acquisition is very important to the outcome of the process.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Cell Biol Lipids
February 2017
Rationale: Cholesteryl hemiesters are oxidation products of polyunsaturated fatty acid esters of cholesterol. Their oxo-ester precursors have been identified as important components of the "core aldehydes" of human atheromata and in oxidized lipoproteins (Ox-LDL). We had previously shown, for the first time, that a single compound of this family, cholesteryl hemisuccinate (ChS), is sufficient to cause irreversible lysosomal lipid accumulation (lipidosis), and is toxic to macrophages.
View Article and Find Full Text PDFSmall GTPases
July 2018
Disruption of the cell plasma membrane can occur due to mechanical damage, pore forming toxins, etc. Resealing or plasma membrane repair (PMR) is the emergency response required for cell survival. It is triggered by Ca entering through the disruption, causing organelles such as lysosomes located underneath the plasma membrane to fuse rapidly with the adjacent plasma membrane.
View Article and Find Full Text PDFLysosome exocytosis plays a major role in resealing plasma membrane (PM) disruptions. This process involves two sequential steps. First, lysosomes are recruited to the periphery of the cell and then fuse with the damaged PM.
View Article and Find Full Text PDFQuaternary ammonium compounds (QAC) are widely used, cheap, and chemically stable disinfectants and topical antiseptics with wide-spectrum antimicrobial activities. Within this group of compounds, we recently showed that there are significant differences between the pharmacodynamics of n-alkyl quaternary ammonium surfactants (QAS) with a short (C12) alkyl chain when in vitro toxicities toward bacterial and mammalian epithelial cells are compared. These differences result in an attractive therapeutic window that justifies studying short-chain QAS as prophylactics for sexually transmitted infections (STI) and perinatal vertically transmitted urogenital infections (UGI).
View Article and Find Full Text PDFObjectives: Broad-spectrum antimicrobial activity of quaternary ammonium surfactants (QAS) makes them attractive and cheap topical prophylactic options for sexually transmitted infections and perinatal vertically transmitted urogenital infections. Although attributed to their high affinity for biological membranes, the mechanisms behind QAS microbicidal activity are not fully understood. We evaluated how QAS structure affects antimicrobial activity and whether this can be exploited for use in prophylaxis of bacterial infections.
View Article and Find Full Text PDFBackground: Several cellular mechanisms have been proposed to explain the pathogenesis of Huntington's disease (HD), including the lack of striatal brain-derived neurotrophic factor (BDNF). Thus, by preferentially binding to tropomyosin receptor kinase B (TrkB) receptor, BDNF is an important neurotrophin implicated in striatal neuronal survival.
Objective: To study the influence of BDNF and TrkB receptors in intracellular signaling pathways and caspase-3 activation in HD striatal cells.
Surfactants have long been known to have microbicidal action and have been extensively used as antiseptics and disinfectants for a variety of general hygiene and clinical purposes. Among surfactants, quaternary ammonium compounds (QAC) are known to be the most useful antiseptics and disinfectants. However, our previous toxicological studies showed that QAC are also the most toxic surfactants for mammalian cells.
View Article and Find Full Text PDFDefective clearance of apoptotic cells has emerged as an important contributing factor to the pathogenesis of many diseases. Although many efforts have been made to understand the machinery involved in the recognition between phagocytes and potential targets, little is known about the intracellular transport of phagosomes containing apoptotic cells within mammalian cells. We have, therefore, performed a detailed study on the maturation of phagosomes containing apoptotic cells in a non-professional phagocytic cell line.
View Article and Find Full Text PDFBackground: Atherosclerosis starts by lipid accumulation in the arterial intima and progresses into a chronic vascular inflammatory disease. A major atherogenic process is the formation of lipid-loaded macrophages in which a breakdown of the endolysomal pathway results in irreversible accumulation of cargo in the late endocytic compartments with a phenotype similar to several forms of lipidosis. Macrophages exposed to oxidized LDL exihibit this phenomenon in vitro and manifest an impaired degradation of internalized lipids and enhanced inflammatory stimulation.
View Article and Find Full Text PDF