Publications by authors named "Otgonzaya Ayush"

Hypodermis is the predominant site of Staphylococcus aureus infections that cause cellulitis. Given the importance of macrophages in tissue remodeling, we examined the hypodermal macrophages (HDMs) and their impact on host susceptibility to infection. Bulk and single-cell transcriptomics uncovered HDM subsets with CCR2-dichotomy.

View Article and Find Full Text PDF

The non-essential amino acid L-glutamine (Gln) displays potent anti-inflammatory activity by deactivating p38 mitogen activating protein kinase and cytosolic phospholipase A via induction of MAPK phosphatase-1 (MKP-1) in an extracellular signal-regulated kinase (ERK)-dependent way. In this study, the mechanism of Gln-mediated ERK-dependency in MKP-1 induction was investigated. Gln increased ERK phosphorylation and activity, and phosphorylations of Ras, c-Raf, and MEK, located in the upstream pathway of ERK, in response to lipopolysaccharide and .

View Article and Find Full Text PDF

Neutrophils are inflammatory cells that may contribute in a crucial way to the pathophysiology of steroid-resistant severe asthma. We previously reported that the nonessential amino acid l-glutamine (Gln) suppressed the recruitment of neutrophils into the airway in a murine model of asthma. In this study, we investigated the mechanisms by which Gln exerts beneficial effects in airway neutrophilia.

View Article and Find Full Text PDF

L-glutamine (Gln) is a nonessential amino acid that is the most abundant amino acid in plasma. Gln has been reported to have an anti-inflammatory activity that involves deactivation of mitogen-activated protein kinases (MAPKs) in a MAPK phosphatase (MKP)-1-dependent manner. This study investigated the role of Gln in the inhibition of DNFB-induced allergic contact dermatitis (CD) in the ears of mice, and specifically the involvement of Gln in p38 MAPK inhibition.

View Article and Find Full Text PDF

Background: Nonspecific airway hyperresponsiveness (AHR) is one of the cardinal features of bronchial asthma. Early AHR is caused by chemical mediators released from pulmonary mast cells activated in an IgE-dependent way. However, the mechanism of late AHR remains unclear.

View Article and Find Full Text PDF