Multiple sclerosis (MS) remains the leading cause of neurological disability among young adults worldwide, underscoring the urgent need to define the best therapeutic strategy. Recent advances in proteomics have deepened our understanding of treatment mechanisms and revealed promising biomarkers for predicting therapeutic outcomes. This study focuses on the identification of a protein profile of circulating extracellular vesicles (EVs) derived from neurons, oligodendrocytes, and B and T cells able to differentiate treatment responders and non-responders in 80 patients with MS.
View Article and Find Full Text PDFCirculating extracellular vesicles (EVs) can participate in innate repair processes triggered after intracerebral hemorrhage (ICH). We aimed to describe changes in the proteomic profile of circulating EVs between the acute and subacute phases of ICH and to compare the findings depending on outcomes, as an approach to unraveling such repair mechanisms. This was a prospective observational study including patients with non-traumatic supratentorial ICH.
View Article and Find Full Text PDFIntroduction: Poststroke hyperglycaemia is an independent risk factor for poorer outcomes in patients treated with mechanical thrombectomy (MT) and is associated with a lower probability of functional recovery and higher mortality at 3 months. This study aims to evaluate the association between glucose levels during cerebral reperfusion with MT and functional recovery at 3 months, measured by subcutaneous continuous glucose monitoring (CGM) devices.
Methods: This prospective observational study aims to recruit 100 patients with ischaemic stroke and large anterior circulation vessel occlusion, in whom MT is indicated.
Although diabetes mellitus negatively affects post-ischaemic stroke injury and recovery, its impact on intracerebral haemorrhage (ICH) remains uncertain. This study aimed to investigate the effect of experimental diabetes (ED) on ICH-induced injury and neurological impairment. Sprague-Dawley rats were induced with ED 2 weeks before ICH induction.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
We aimed to analyze whether EVs carry antibodies against EBV antigens and the possibility that they could serve as diagnostic and disease activity blood biomarkers in RRMS. This was a prospective and observational study including patients with RRMS with active and inactive disease and healthy controls. Blood EVs were isolated by precipitation.
View Article and Find Full Text PDFIntroduction: Multiple sclerosis is an inflammatory and demyelinating disease caused by a pathogenic immune response against the myelin sheath surfaces of oligodendrocytes. The demyelination has been classically associated with pathogenic B cells residing in the central nervous system that release autoreactive antibodies against myelin. The aim of the present study was to investigate whether extracellular vesicles (EVs) mediate delivery of myelin autoreactive antibodies from peripheral B cells against oligodendrocytes in multiple sclerosis (MS) and to analyze whether these EVs could mediate demyelination .
View Article and Find Full Text PDFBrain Behav Immun
October 2023
Background: Multiple sclerosis (MS) is an immune-mediated central nervous system disease whose course is unpredictable. Finding biomarkers that help to better comprehend the disease's pathogenesis is crucial for supporting clinical decision-making. Blood extracellular vesicles (EVs) are membrane-bound particles secreted by all cell types that contain information on the disease's pathological processes.
View Article and Find Full Text PDFCirculating extracellular vesicles (EVs) are proposed to participate in enhancing pathways of recovery after stroke through paracrine signaling. To verify this hypothesis in a proof-of-concept study, blood-derived allogenic EVs from rats and xenogenic EVs from humans who experienced spontaneous good recovery after an intracerebral hemorrhage (ICH) were administered intravenously to rats at 24 h after a subcortical ICH. At 28 days, both treatments improved the motor function assessment scales score, showed greater fiber preservation in the perilesional zone (diffusion tensor-fractional anisotropy MRI), increased immunofluorescence markers of myelin (MOG), and decreased astrocyte markers (GFAP) compared with controls.
View Article and Find Full Text PDFExtracellular vesicles (EVs) participate in cell-to-cell paracrine signaling and can be biomarkers of the pathophysiological processes underlying disease. In intracerebral hemorrhage, the study of the number and molecular content of circulating EVs may help elucidate the biological mechanisms involved in damage and repair, contributing valuable information to the identification of new therapeutic targets. The objective of this study was to describe the number and protein content of blood-derived EVs following an intracerebral hemorrhage (ICH).
View Article and Find Full Text PDFThe field of Autoimmune Neurology is expanding rapidly, with new neural antibodies being identified each year. However, these disorders remain rare. Deciding when to test for these antibodies, when and what samples are to be obtained, how to handle and study them correctly, and how to interpret test results, is complex.
View Article and Find Full Text PDFCell Transplant
May 2022
Acute ischemic stroke is currently a major cause of disability despite improvement in recanalization therapies. Stem cells represent a promising innovative strategy focused on reduction of neurologic sequelae by enhancement of brain plasticity. We performed a phase IIa, randomized, double-blind, placebo-controlled, single-center, pilot clinical trial.
View Article and Find Full Text PDFMagnetic resonance imaging (MRI) is currently used for the study of intracerebral hemorrhage (ICH) in animal models. However, ultrasound is an inexpensive, non-invasive and rapid technique that could facilitate the diagnosis and follow-up of ICH. This study aimed to evaluate the feasibility and reliability of B-mode ultrasound as an alternative tool for monitoring of ICH volume and brain structure displacement in an animal model.
View Article and Find Full Text PDFUltrasound is a noninvasive technique that provides real-time imaging with excellent resolution, and several studies demonstrated the potential of ultrasound in acute ischemic stroke monitoring. However, only a few studies were performed using animal models, of which many showed ultrasound to be a safe and effective tool also in therapeutic applications. The full potential of ultrasound application in experimental stroke is yet to be explored to further determine the limitations of this technique and to ensure the accuracy of translational research.
View Article and Find Full Text PDFExtracellular vesicles (EVs) are a heterogeneous group of bilayer membrane-wrapped molecules that play an important role in cell-to-cell communication, participating in many physiological processes and in the pathogenesis of several diseases, including multiple sclerosis (MS). In recent years, many studies have focused on EVs, with promising results indicating their potential role as biomarkers in MS and helping us better understand the pathogenesis of the disease. Recent evidence suggests that there are novel subpopulations of EVs according to cell origin, with those derived from cells belonging to the nervous and immune systems providing information regarding inflammation, demyelination, axonal damage, astrocyte and microglia reaction, blood-brain barrier permeability, leukocyte transendothelial migration, and ultimately synaptic loss and neuronal death in MS.
View Article and Find Full Text PDFIn order to investigate the role of circulating extracellular vesicles (EVs), proteins, and microRNAs as damage and repair markers in ischaemic stroke depending on its topography, subcortical (SC), and cortical-subcortical (CSC) involvement, we quantified the total amount of EVs using an enzyme-linked immunosorbent assay technique and analysed their global protein content using proteomics. We also employed a polymerase chain reaction to evaluate the circulating microRNA profile. The study included 81 patients with ischaemic stroke (26 SC and 55 CSC) and 22 healthy controls (HCs).
View Article and Find Full Text PDFExtracellular vesicles (EVs) are involved in intercellular signalling through the transfer of molecules during physiological and pathological conditions, such as ischaemic disease. EVs might therefore play a role in ischaemic stroke (IS) and myocardial infarction (MI). In the present study, we analysed the similarities and differences in the content of circulating EVs in patients with IS and MI.
View Article and Find Full Text PDFIntroduction: Glycemic variability (GV) represents the amplitude of oscillations in glucose levels over time and is associated with higher mortality in critically ill patients. Our aim is to evaluate the impact of GV on acute ischemic stroke (IS) outcomes in humans and explore the impact of two different insulin administration routes on GV in an animal model.
Methods: This translational study consists of two studies conducted in parallel: The first study is an observational, multicenter, prospective clinical study in which 340 patients with acute IS will be subcutaneously implanted a sensor to continuously monitor blood glucose levels for 96 h.
Background: Ultrasound is a safe, non-invasive and affordable imaging technique for the visualization of internal structures and the measurement of blood velocity using Doppler imaging. However, despite all these advantages, no study has identified the structures of the rat brain using conventional ultrasound.
Methods: A 13 MHz high frequency transducer was used to identify brain structures in the rat.
Background: Mesenchymal stem cell-derived extracellular vesicles (EVs) are one of the most promising therapeutics in protective and/or regenerative therapy in animal models of stroke using a dose of 100 μg. However, whether EVs dose is related to outcomes is not known. This study aimed to identify the optimal effective dose of EVs from adipose tissue-derived mesenchymal stem cells that promote functional recovery in subcortical stroke.
View Article and Find Full Text PDFBackground and Purpose- Hypertension is the most frequent comorbidity in stroke.The purpose of this study was to evaluate whether hypertension alters the response to treatment with adipose tissue-derived mesenchymal stem cells (ADMSCs) after an ischemic stroke in rats. Methods- Ischemic stroke was induced in male normotensive or hypertensive rats.
View Article and Find Full Text PDFBackground: Over 50% of acute stroke patients have hyperglycemia, which is associated with a poorer prognosis and outcome. Our aim was to investigate the impact of hyperglycemia on behavioral recovery and brain repair of delivered human adipose tissue-derived mesenchymal stem cells (hAD-MSCs) in a rat model of permanent middle cerebral artery occlusion (pMCAO).
Methods: Hyperglycemia was induced in rats by the administration of nicotinamide and streptozotocin.
Background And Purpose: The aim was to identify whether post-stroke hyperglycaemia (PSH) influences the levels of circulating biomarkers of brain damage and repair, and to explore whether these biomarkers mediate the effect of PSH on the ischaemic stroke (IS) outcome.
Methods: This was a secondary analysis of the Glycaemia in Acute Stroke II study. Biomarkers of inflammation, prothrombotic activity, endothelial dysfunction, blood-brain barrier rupture, cell death and brain repair processes were analysed at 24-48 h (baseline) and 72-96 h (follow-up) after IS.
Stroke is a major health problem worldwide. It has been estimated that 90% of the population attributable risk of stroke is due to risk factors such as aging, hypertension, hyperglycemia, diabetes mellitus and obesity, among others. However, most animal models of stroke use predominantly healthy and young animals.
View Article and Find Full Text PDF