Publications by authors named "Otero-Mato J"

Polymer-based solid-like gel electrolytes have emerged as a promising alternative to improve battery performance. However, there is a scarcity of studies on the behavior of these media at the electrochemical interface. In this work, we report classical MD simulations of ternary polymer electrolytes composed of poly(ethylene oxide), a lithium salt [lithium bis(trifluoromethanesulfonyl)imide], and different ionic liquids [1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide and 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide] confined between two charged and uncharged graphene-like surfaces.

View Article and Find Full Text PDF

We report the structure and charge transport properties of a novel solid-state proton conductor obtained by acid-base chemistry via proton transfer from 12-tungstophosphoric acid to imidazole. The resulting material (henceforth named ImidWP) is a solid salt hydrate that, at room temperature, includes four water molecules per structural unit. To our knowledge, this is the first attempt to tune the properties of a heteropolyacid-based solid-state proton conductor by means of a mixture of water and imidazole, interpolating between water-based and ionic liquid-based proton conductors of high thermal and electrochemical stability.

View Article and Find Full Text PDF

Mixtures of the ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate with amphiphilic cosolvents, such as methanol and ethanol, nanoconfined between graphene walls are studied by means of molecular dynamics simulations and the results are compared with those of the pure ionic liquid and its mixtures with water confined in the same conditions. We investigate the adsorption of cosolvent molecules at the graphene walls as well as their distribution across the system. The results show that, due to a higher affinity of the polar groups to be close to the anions in combination with the electrostatic and excluded volume interactions, there exists a high tendency of the OH groups to lie close to the anode, inducing small changes in the first cation layer.

View Article and Find Full Text PDF

We perform molecular dynamics simulations of mixtures of a prototypical protic ionic liquid, ethylammonium nitrate, with lithium or magnesium nitrate (LiNO3/Mg(NO3)2) confined between two graphene walls. The structure of the system is analyzed by means of ionic density profiles, angular orientations of ethylammonium cations close to the wall and the lateral structure of the first layer close to the graphene wall. All these results are compared to those of the corresponding aprotic ionic liquid systems, analyzing the influence of the graphene wall charge in the structure of the protic and aprotic mixtures.

View Article and Find Full Text PDF

A new method for switching between structures consisting of equivalent discrete and flexible objects with different particle representation and object configuration, including different resolution levels (number of particles per object), is reported. The method is fully general since it does not require any extra code nor additional database elements for new systems. It is based on a Monte Carlo sampling of the configurational space for each object type of the target system.

View Article and Find Full Text PDF

We perform molecular dynamics simulations of ionic liquids confined between graphene walls under a large variety of conditions (pure ionic liquids, mixtures with water and alcohols, mixtures with lithium salts and defective graphene walls). Our results show that the formation of striped and hexagonal patterns in the Stern layer can be considered as a general feature of ionic liquids at electrochemical interfaces, the transition between patterns being controlled by the net balance of charge in the innermost layer of adsorbed molecules. This explains previously reported experimental and computational results and, for the first time, why these pattern changes are triggered by any perturbation of the charge density at the innermost layer of the electric double layer (voltage and composition changes, and vacancies at the electrode walls, among others), which may help tuning electrode-ionic liquid interfaces.

View Article and Find Full Text PDF

The structural and dynamical properties of bulk mixtures of long-chained primary and secondary alcohols (propanol, butanol, and 2-pentanol) with protic ionic liquids (ethylammonium and butylammonium nitrate) were studied by means of molecular dynamics simulations and small angle X-ray scattering (SAXS). Changes in the structure with the alcohol concentration and with the alkyl chain length of the alcohol moieties were found, showing variations in the radial distribution function and in the number of hydrogen bonds in the bulk liquids. Moreover, the structural behaviour of the studied mixtures is further clarified with the spatial distribution functions.

View Article and Find Full Text PDF

This work describes the behaviour of water molecules in 1-butyl-3-methylimidazolium tetrafluoroborate ionic liquid under nanoconfinement, between graphene sheets. By means of molecular dynamics simulations, the adsorption of water molecules at the graphene surface is studied. A depletion of water molecules in the vicinity of the neutral and negatively charged graphene surfaces, and their adsorption at the positively charged surface are observed in line with the preferential hydration of the ionic liquid anions.

View Article and Find Full Text PDF