Reduced graphene oxide (rGO) is a promising graphene-based material, with transversal applicability to a wide range of technological fields. Nevertheless, the common use of efficient-but hazardous to environment and toxic-reducing agents prevents its application in biological and other fields. Consequently, the development of green reducing strategies is a requirement to overcome this issue.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
September 2020
We present a comparative study of the room-temperature adsorption of p-aminophenol (p-AP) molecules on three metal surfaces, namely Cu(110), Cu(111) and Pt(111). We show that the chemical nature and the structural symmetry of the substrate control the activation of the terminal molecular groups, which result in different arrangements of the interfacial molecular layer. To this aim, we have used in-situ STM images combined with synchrotron radiation high resolution XPS and NEXAFS spectra, and the results were simulated by DFT calculations.
View Article and Find Full Text PDFGraphene oxide (GO) assists a diverse set of promising routes to build bioactive neural microenvironments by easily interacting with other biomaterials to enhance their bulk features or, alternatively, self-assembling toward the construction of biocompatible systems with specific three-dimensional (3D) geometries. Herein, we first modulate both size and available oxygen groups in GO nanosheets to adjust the physicochemical and biological properties of polycaprolactone-gelatin electrospun nanofibrous systems. The results show that the incorporation of customized GO nanosheets modulates the properties of the nanofibers and, subsequently, markedly influences the viability of neural progenitor cell cultures.
View Article and Find Full Text PDFOn-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1,4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations.
View Article and Find Full Text PDFThe solid-gas phase photo-catalytic activities of rutile TiO₂ and TiO (1 < n < 2) sub-oxide phases have been evaluated. Varying concentrations of Ti defects were introduced into the rutile polymorph of titanium dioxide through carbo-thermal reduction at temperatures ranging from 350 °C to 1300 °C. The resulting sub-oxides formed were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, impedance spectroscopy and UV-visible diffuse reflectance spectroscopy.
View Article and Find Full Text PDFWhile high-quality defect-free epitaxial graphene can be efficiently grown on metal substrates, strong interaction with the supporting metal quenches its outstanding properties. Thus, protocols to transfer graphene to insulating substrates are obligatory, and these often severely impair graphene properties by the introduction of structural or chemical defects. Here we describe a simple and easily scalable general methodology to structurally and electronically decouple epitaxial graphene from Pt(111) and Ir(111) metal surfaces.
View Article and Find Full Text PDFOn-surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on-surface chemistry route has now been used to synthesize the strong electron-acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para-aminophenol precursors.
View Article and Find Full Text PDFThe intrinsic atomic mechanisms responsible for electronic doping of epitaxial graphene Moirés on transition metal surfaces is still an open issue. To better understand this process we have carried out a first-principles full characterization of the most representative Moiré superstructures observed on the Gr/Pt(111) system and confronted the results with atomically resolved scanning tunneling microscopy experiments. We find that for all reported Moirés the system relaxes inducing a non-negligible atomic corrugation both, at the graphene and at the outermost platinum layer.
View Article and Find Full Text PDFDirect sublimation of a Cu4Cl4 metal-organic cluster on Cu(110) under ultra-high vacuum allows the formation of ultra-large well-organized metal-organic supramolecular wires. Our results show that the large monomers assemble with each other by π-π interactions connecting dipyrimidine units and are stabilized by the surface.
View Article and Find Full Text PDFThe interaction of fullerenes with transition metal surfaces leads to the development of an atomic network of ordered vacancies on the metal. However, the structure and formation mechanism of this intricate surface reconstruction is not yet understood at an atomic level. We combine scanning tunneling microscopy, high resolution and temperature programmed-x-ray photoelectrons spectroscopy, and density functional theory calculations to show that the vacancy formation in C60/Pt(111) is a complex process in which fullerenes undergo two significant structural rearrangements upon thermal annealing.
View Article and Find Full Text PDFSurface-assisted cyclodehydrogenation and dehydrogenative polymerization of polycyclic (hetero)aromatic hydrocarbons (PAH) are among the most important strategies for bottom-up assembly of new nanostructures from their molecular building blocks. Although diverse compounds have been formed in recent years using this methodology, a limited knowledge on the molecular machinery operating at the nanoscale has prevented a rational control of the reaction outcome. We show that the strength of the PAH-substrate interaction rules the competitive reaction pathways (cyclodehydrogenation versus dehydrogenative polymerization).
View Article and Find Full Text PDF