Publications by authors named "Otavio Henrique Bezerra Pinto"

Despite recent progress, bacterial degradation of lignin is not completely understood. To address the mechanisms that bacteria from unknown taxonomic groups use to perform lignin-monomer degradation, functional analysis of bacterial metagenome-assembled genomes from soil-derived consortia enriched for microorganisms capable of degrading lignin was performed. A total of 232 metagenome-assembled genomes were recovered.

View Article and Find Full Text PDF

Background: Dihydrogen (H₂) natural gas is a clean and renewable energy source of significant interest in the transition to sustainable energy. Unlike conventional petroleum-based fuels, H₂ releases only water vapor upon combustion, making it a promising alternative for reducing carbon footprints in the future. However, the microbial impact on H₂ dynamics in H-emitting zones remains unclear, as does the origin of H - whether it is produced at greater depths or within shallow soil layers.

View Article and Find Full Text PDF

Rupestrian grasslands are vegetation complexes of the Cerrado biome (Brazilian savanna), exhibiting simultaneously great biodiversity and important open-pit mining areas. There is a strong demand for the conservation of remaining areas and restoration of degraded. This study evaluated, using next-generation sequencing, the diversity and ecological aspects of soil fungal communities in ferruginous rupestrian grassland areas preserved and degraded by bauxite mining in Brazil.

View Article and Find Full Text PDF

Bacteria from the genus Paenibacillus make a variety of antimicrobial compounds, including lipopeptides produced by a non-ribosomal synthesis mechanism (NRPS). In the present study, we show the genomic and phenotypical characterization of Paenibacillus elgii AC13 which makes three groups of small molecules: the antimicrobial pelgipeptins and two other families of peptides that have not been described in P. elgii.

View Article and Find Full Text PDF

We studied the fungal DNA present in a lake sediment core obtained from Trinity Peninsula, Hope Bay, north-eastern Antarctic Peninsula, using metabarcoding through high-throughput sequencing (HTS). Sequences obtained were assigned to 146 amplicon sequence variants (ASVs) primarily representing unknown fungi, followed by the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota. The most abundant taxa were assigned to Fungal sp.

View Article and Find Full Text PDF

Background: Vega Island is located off the eastern tip of the Antarctic Peninsula (Maritime Antarctica), in the Weddell Sea. In this study, we used metabarcoding to investigate green algal DNA sequence diversity present in sediments from three lakes on Vega Island (Esmeralda, Copépodo, and Pan Negro Lakes).

Methods And Results: Total DNA was extracted and the internal transcribed spacer 2 region of the nuclear ribosomal DNA was used as a DNA barcode for molecular identification.

View Article and Find Full Text PDF

We evaluated fungal and bacterial diversity in an established moss carpet on King George Island, Antarctica, affected by 'fairy ring' disease using metabarcoding. A total of 127 fungal and 706 bacterial taxa were assigned. Ascomycota dominated the fungal assemblages, followed by Basidiomycota, Rozellomycota, Chytridiomycota, Mortierellomycota and Monoblepharomycota.

View Article and Find Full Text PDF

We report the genome sequence of a polyethylene-degrading bacterial strain identified as Stenotrophomonas maltophilia strain PE591, which was isolated from plastic debris found in savanna soil. The genome was assembled in 16 scaffolds with a length of 4,751,236 bp, a GC content of 66.5%, and 4,432 predicted genes.

View Article and Find Full Text PDF

We assessed fungal diversity present in glacial from the Antarctic Peninsula using DNA metabarcoding through high-throughput sequencing (HTS). We detected a total of 353,879 fungal DNA reads, representing 94 genera and 184 taxa, in glacial ice fragments obtained from seven sites in the north-west Antarctic Peninsula and South Shetland Islands. The phylum Ascomycota dominated the sequence diversity, followed by Basidiomycota and Mortierellomycota.

View Article and Find Full Text PDF

We assessed the diversity of fungal DNA present in sediments of three lakes on Vega Island, north-east Antarctic Peninsula using metabarcoding through high-throughput sequencing (HTS). A total of 640,902 fungal DNA reads were detected, which were assigned to 224 taxa of the phyla Ascomycota, Rozellomycota, Basidiomycota, Chytridiomycota and Mortierellomycota, in rank order of abundance. The most abundant genera were Pseudogymnoascus, Penicillium and Mortierella.

View Article and Find Full Text PDF

We assess the fungal diversity present in permafrost from different islands in the South Shetland Islands archipelago, maritime Antarctic, using next-generation sequencing (NGS). We detected 1,003,637 fungal DNA reads representing, in rank abundance order, the phyla Ascomycota, Mortierellomycota, Basidiomycota, Chytridiomycota, Rozellomycota, Mucoromycota, Calcarisporiellomycota and Zoopagomycota. Ten taxa were dominant these being, in order of abundance, Pseudogymnoascus appendiculatus, Penicillium sp.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explored fungal diversity in the soil and rocks of a polar desert in Antarctica, identifying 517 unique fungal species through DNA metabarcoding, with a significant number belonging to known genera like Penicillium and Aspergillus.
  • - The results indicated that fungal communities in the sampled habitats were diverse, with the gypsum crust type 2 showing the highest diversity compared to other Antarctic environments, though only a small fraction of species were common across all habitats.
  • - The findings suggest a complex ecosystem where fungi play various ecological roles, possibly influenced by environmental factors and human activities, challenging previous notions of extreme fungal scarcity in Antarctica.
View Article and Find Full Text PDF

We assessed fungal diversity in deep-sea sediments obtained from different depths in the Southern Ocean using the internal transcribed spacer 2 (ITS2) region of nuclear ribosomal DNA by metabarcoding through high-throughput sequencing (HTS). We detected 655,991 DNA reads representing 263 fungal amplicon sequence variants (ASVs), dominated by Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, Chytridiomycota and Rozellomycota, confirming that deep-sea sediments can represent a hotspot of fungal diversity in Antarctica. The community diversity detected included 17 dominant fungal ASVs, 62 intermediate and 213 rare.

View Article and Find Full Text PDF

We assessed soil fungal diversity at two sites on Deception Island, South Shetland Islands, Antarctica using DNA metabarcoding analysis. The first site was a relatively undisturbed area, and the second was much more heavily impacted by research and tourism. We detected 346 fungal amplicon sequence variants dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota and Chytridiomycota.

View Article and Find Full Text PDF

We assessed fungal diversity present in air and freshly deposited snow samples obtained from Livingston Island, Antarctica, using DNA metabarcoding through high throughput sequencing (HTS). A total of 740 m of air were pumped through a 0.22 µm membrane.

View Article and Find Full Text PDF

We assessed fungal diversity present in air samples obtained from King George Island, Antarctica, using DNA metabarcoding through high-throughput sequencing. We detected 186 fungal amplicon sequence variants (ASVs) dominated by the phyla Ascomycota, Basidiomycota, Mortierellomycota, Mucoromycota, and Chytridiomycota. Fungi sp.

View Article and Find Full Text PDF

Eusocial animals, such as the termites, often build a nest-like structure called a mound that provides shelter with stable internal conditions and protection against predators. Termites are important components of the Brazilian Cerrado biota. This study aimed to investigate the bacterial community composition and diversity of the termite-mound soil using culture-independent approaches.

View Article and Find Full Text PDF

The presence of genes for glycosyl hydrolases in many Acidobacteria genomes indicates an important role in the degradation of plant cell wall material. Acidobacteria bacterium AB60 was obtained from Cerrado oligotrophic soil in Brazil, where this phylum is abundant. The 16S rRNA gene analyses showed that AB60 was closely related to the genera Occallatibacter and Telmatobacter.

View Article and Find Full Text PDF

Metagenomic studies revealed the prevalence of Acidobacteria in soils, but the physiological and ecological reasons for their success are not well understood. Many Acidobacteria exhibit carotenoid-related pigments, which may be involved in their tolerance of environmental stress. The aim of this work was to investigate the role of the orange pigments produced by Acidobacteria strain AB23 isolated from a savannah-like soil and to identify putative carotenoid genes in Acidobacteria genomes.

View Article and Find Full Text PDF