Human hair, composed primarily of keratin, represents a sustainable waste material suitable for various applications. Synthesizing keratin nanoparticles (KNPs) from human hair for biomedical uses is particularly attractive due to their biocompatibility. In this study, keratin was extracted from human hair using concentrated sulfuric acid as the hydrolysis agent for the first time.
View Article and Find Full Text PDFFilms based on poly(vinyl alcohol) (PVA) and cationic starch (CS) were combined with different percentages of sorbitol (S; 15.0, 22.5, and 30.
View Article and Find Full Text PDFCarboxymethylcellulose (CMC) and keratin nanoparticle (KNP) hydrogels were obtained, characterized, and applied as drug delivery systems (DDSs) for the first time. Lyophilized CMC/KNP mixtures containing 10, 25, and 50 wt% of KNPs were kept at 170 °C for 90 min to crosslink CMC chains through a solid-state reaction with the KNPs. The hydrogels were characterized by infrared spectroscopy, thermal analyses, X-ray diffraction, mechanical measurements, and scanning electron microscopy.
View Article and Find Full Text PDFThe incorporation of plant-based extracts into polymer-based coatings is an efficient alternative to increase the shelf-life of stored fruit and to decrease or even prevent bacterial growth. Considering strawberries, it is also important to preserve their high antioxidant activity. Hence, this work evaluated the efficiency of a coating based on native cassava starch (NCS), gelatin, and sorbitol, containing different concentrations of Tetradenia riparia extract, in delaying the ripening process of strawberries stored under refrigerated conditions, and in preventing bacterial growth and antioxidant activity losses.
View Article and Find Full Text PDFGuava is a perishable fruit susceptible to post-harvest losses. So, the development of biodegradable films based on acetylated cassava starch (ACS) and hydroxyethyl cellulose (HEC) could be an alternative to increase guavas (Psidium guajava L.) shelf life.
View Article and Find Full Text PDFCoating fruits surface with biodegradable films obtained from starch is an alternative to delay the fruit ripening process. This study aimed to develop a biodegradable film from a polymer blend consisting of natural cassava starch, casein, and gelatin, and using sorbitol as the plasticizer. Among all the prepared biodegradable films (BFs), the one with desirable results in thickness, opacity, solubility, and water vapor transmission rate (WVTR) analyzes was based on a high concentration of starch, and casein, and low concentration of gelatin.
View Article and Find Full Text PDFFilms based on cassava starch have been widely used for fruit coating; however, it is necessary to incorporate other polymers in order to improve mechanical properties, once starch only leads to highly hydrophilic films, compromising their application. In this way, a polymeric blend based on cassava starch, chitosan and gelatin was combined with a plasticizer to produce biodegradable films with satisfactory mechanical and barrier properties, in order to be used as fruit coating. The films were prepared by casting method and a statistical design of 2 was used to evaluate the effect of each polymer and what their combinations would influence over the final product.
View Article and Find Full Text PDFThe coronary fistula is an anomaly characterized by the communication between a coronary artery and a cardiac chamber, pulmonary artery, coronary sinus and pulmonary veins. It represents 0.2 to 0.
View Article and Find Full Text PDF