After ejaculation, mammalian sperm undergo a series of molecular events conducive to the acquisition of fertilizing competence. These events are collectively known as capacitation and involve acrosomal responsiveness and a vigorous sperm motility called hyperactivation. When mimicked in the laboratory, capacitating bovine sperm medium contains bicarbonate, calcium, albumin and heparin, among other components.
View Article and Find Full Text PDFThe exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel.
View Article and Find Full Text PDFEarly development in mammals is characterized by the ability of each cell to produce a complete organism plus the extraembryonic, or placental, cells, defined as pluripotency. During subsequent development, pluripotency is lost, and cells begin to differentiate to a particular cell fate. This review summarizes the current knowledge of pluripotency features of bovine embryos cultured in vitro, focusing on the core of pluripotency genes (, , , and ), and main chemical strategies for controlling pluripotent networks during early development.
View Article and Find Full Text PDFWith the progressive increase in the use of reproductive biotechnologies in the cattle industry, like artificial insemination and in vitro embryo production, the accurate determination of fertilizing competence of cryopreserved sperm samples is an essential issue. The routine methodology to assess bull sperm quality relies primarily on count, viability and motility of spermatozoa. However, these parameters do not tightly predict the reproductive success of samples.
View Article and Find Full Text PDFCryopreservation by negatively affecting sperm quality decreases the efficiency of assisted reproduction techniques (ARTs). Thus, we first evaluated sperm motility at different conditions for the manipulation of equine cryopreserved spermatozoa. Higher motility was observed when spermatozoa were incubated for 30 min at 30 × 10/mL compared to lower concentrations ( < 0.
View Article and Find Full Text PDFPreviously we demonstrated that multidrug resistance-associated protein 4 transporter (MRP4) mediates cAMP efflux in bovine spermatozoa and that extracellular cAMP (ecAMP) triggers events associated to capacitation. Here, we deepen the study of the role of MRP4 in bovine sperm function by using MK571, an MRP4 inhibitor. The incubation of spermatozoa with MK571 during 45 min inhibited capacitation-associated events.
View Article and Find Full Text PDFMammalian ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, collectively called capacitation, in order to fertilize the oocyte. We reported that fibronectin (Fn), a glycoprotein from the extracellular matrix, and anandamide (AEA), one of the major members of the endocannabinoid family, are present in the bovine oviductal fluid and regulate bull sperm function. Also, AEA induces bovine sperm capacitation, through CB1 and TRPV1 receptors.
View Article and Find Full Text PDFFibronectin (Fn) enhances human sperm capacitation via the cAMP/PKA pathway, and the endocannabinoid system participates in this process. Moreover, Fn has been linked to endocannabinoid system components in different cellular models, even though no evidence of such interactions in human sperm is available. Normal semen samples were evaluated over a 4-year period.
View Article and Find Full Text PDFStudy Question: Is extracellular cAMP involved in the regulation of signalling pathways in bovine sperm capacitation?
Summary Answer: Extracellular cAMP induces sperm capacitation through the activation of different signalling pathways that involve phospholipase C (PLC), PKC/ERK1-2 signalling and an increase in sperm Ca2+ levels, as well as soluble AC and cAMP/protein kinase A (PKA) signalling.
What Is Known Already: In order to fertilize the oocyte, ejaculated spermatozoa must undergo a series of changes in the female reproductive tract, known as capacitation. This correlates with a number of membrane and metabolic modifications that include an increased influx of bicarbonate and Ca2+, activation of a soluble adenylyl cyclase (sAC) to produce cAMP, PKA activation, protein tyrosine phosphorylation and the development of hyperactivated motility.
During the passage of sperm through the oviduct, spermatozoa bind to the oviductal epithelium and form the oviductal reservoir. This interaction keeps the fertilizing capacity of sperm until ovulation-associated signals induce sperm release from the oviductal epithelium, allowing the transit of spermatozoa to the fertilization site. Fibronectin is a glycoprotein from the extracellular matrix that binds to α5β1 receptors.
View Article and Find Full Text PDFThe oviduct acts as a functional sperm reservoir in many mammalian species. Both binding and release of spermatozoa from the oviductal epithelium are mainly modulated by sperm capacitation. Several molecules from oviductal fluid are involved in the regulation of sperm function.
View Article and Find Full Text PDFStudy Question: Does fibronectin (Fn) stimulate the sperm capacitation process in humans?
Summary Answer: Fibronectin stimulates human sperm capacitation.
What Is Known Already: Capacitation is a process that occurs in the oviduct. It has been suggested that some molecules present in the oviductal fluid and cells as well as proteins present in the cumulus oophorus could be involved in the modulation of sperm function and their acquisition of fertilizing capacity.
Sperm capacitation has been largely associated with an increase in cAMP, although its relevance in the underlying mechanisms of this maturation process remains elusive. Increasing evidence shows that the extrusion of cAMP through multidrug resistance associated protein 4 (MRP4) regulates cell homeostasis not only in physiological but also in pathophysiological situations and studies from our laboratory strongly support this assumption. In the present work we sought to establish the role of cAMP efflux in the regulation of sperm capacitation.
View Article and Find Full Text PDFMammalian spermatozoa are not able to fertilize an egg immediately upon ejaculation. They acquire this ability during their transit through the female genital tract in a process known as capacitation. The mammalian oviduct acts as a functional sperm reservoir providing a suitable environment that allows the maintenance of sperm fertilization competence until ovulation occurs.
View Article and Find Full Text PDFAnandamide (AEA), a major endocannabinoid, binds to cannabinoid and vanilloid receptors (CB1, CB2 and TRPV1) and affects many reproductive functions. Nanomolar levels of anandamide are found in reproductive fluids including mid-cycle oviductal fluid. Previously, we found that R(+)-methanandamide, an anandamide analogue, induces sperm releasing from bovine oviductal epithelium and the CB1 antagonist, SR141716A, reversed this effect.
View Article and Find Full Text PDFEven though the understanding of the cause of early pregnancy loss due to chromosomal abnormalities has improved, there is a dearth of knowledge of the causes of loss in euploid conceptuses. Maternal infections are a cause of abort in humans, but the mechanisms are not clear, so we have developed a murine model to study the mechanism of septic abortion by inducing embryonic resorption (ER) with lipopolysaccharide (LPS). We demonstrated that augmented production of nitric oxide (NO) and prostaglandins (PG) is involved in ER, and that inhibitors of their synthesis could prevent ER.
View Article and Find Full Text PDF