Flowthrough and pond aquaculture system microbiome management practices aim to mitigate fish disease and stress. However, the operational success of recirculating aquaculture systems (RAS) depends directly on system microbial community activities. In RAS, each component environment is engineered for a specific microbial niche for waste management, as the water continuously flowing through the system must be processed before returning to the rearing tank.
View Article and Find Full Text PDFAs the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops.
View Article and Find Full Text PDFMany studies have shown that stress-induced cortisol levels negatively influence growth and immunity in finfish. Despite this knowledge, few studies have assessed the direct effects of cortisol on liver immune function. Using real-time PCR, the expression of three cortisol-responsive genes (GR: glucocorticoid receptor, IGF-1: insulin-like growth factor-I and SOCS-1: suppressor of cytokine signaling-I), genes involved with innate and adaptive immunity (IL-1β: interleukin-1 beta, IgM: immunoglobin-M and Lyz: lysozyme), and liver-specific antimicrobial peptides (hepcidin and LEAP-2A: liver-expressed antimicrobial peptide-2A) was studied in vitro using rainbow trout liver slices.
View Article and Find Full Text PDFComparisons of a species' genetic diversity and divergence patterns across large connected populations vs. isolated relict areas provide important data for understanding potential response to global warming, habitat alterations and other perturbations. Aquatic taxa offer ideal case studies for interpreting these patterns, because their dispersal and gene flow often are constrained through narrow connectivity channels that have changed over geological time and/or from contemporary anthropogenic perturbations.
View Article and Find Full Text PDF