Publications by authors named "Osval Antonio Montesinos-Lopez"

Real-life implementation of the Internet of Things (IoT) in healthcare requires sufficient quality of service (QoS) to transmit the collected data successfully. However, unsolved challenges in prioritization and congestion issues limit the functionality of IoT networks by increasing the likelihood of packet loss, latency, and high-power consumption in healthcare systems. This study proposes a priority-based cross-layer congestion control protocol called QCCP, which is managed by communication devices' transport and medium access control (MAC) layers.

View Article and Find Full Text PDF

The adoption of machine learning frameworks in areas beyond computer science have been facilitated by the development of user-friendly software tools that do not require an advanced understanding of computer programming. In this paper, we present a new package (sparse kernel methods, SKM) software developed in R language for implementing six (generalized boosted machines, generalized linear models, support vector machines, random forest, Bayesian regression models and deep neural networks) of the most popular supervised machine learning algorithms with the optional use of sparse kernels. The SKM focuses on user simplicity, as it does not try to include all the available machine learning algorithms, but rather the most important aspects of these six algorithms in an easy-to-understand format.

View Article and Find Full Text PDF

Genomic selection (GS) is a predictive methodology that is changing plant breeding. Genomic selection trains a statistical machine-learning model using available phenotypic and genotypic data with which predictions are performed for individuals that were only genotyped. For this reason, some statistical machine-learning methods are being implemented in GS, but in order to improve the selection of new genotypes early in the prediction process, the exploration of new statistical machine-learning algorithms must continue.

View Article and Find Full Text PDF

Genomic enabled prediction is playing a key role for the success of genomic selection (GS). However, according to the No Free Lunch Theorem, there is not a universal model that performs well for all data sets. Due to this, many statistical and machine learning models are available for genomic prediction.

View Article and Find Full Text PDF

Genomic-enabled prediction models are of paramount importance for the successful implementation of genomic selection (GS) based on breeding values. As opposed to animal breeding, plant breeding includes extensive multienvironment and multiyear field trial data. Hence, genomic-enabled prediction models should include genotype × environment (G × E) interaction, which most of the time increases the prediction performance when the response of lines are different from environment to environment.

View Article and Find Full Text PDF

Machine learning methods such as multilayer perceptrons (MLP) and Convolutional Neural Networks (CNN) have emerged as promising methods for genomic prediction (GP). In this context, we assess the performance of MLP and CNN on regression and classification tasks in a case study with maize hybrids. The genomic information was provided to the MLP as a relationship matrix and to the CNN as "genomic images.

View Article and Find Full Text PDF

Genomic selection (GS) is a predictive methodology that trains statistical machine-learning models with a reference population that is used to perform genome-enabled predictions of new lines. In plant breeding, it has the potential to increase the speed and reduce the cost of selection. However, to optimize resources, sparse testing methods have been proposed.

View Article and Find Full Text PDF

When multitrait data are available, the preferred models are those that are able to account for correlations between phenotypic traits because when the degree of correlation is moderate or large, this increases the genomic prediction accuracy. For this reason, in this article, we explore Bayesian multitrait kernel methods for genomic prediction and we illustrate the power of these models with three-real datasets. The kernels under study were the linear, Gaussian, polynomial, and sigmoid kernels; they were compared with the conventional Ridge regression and GBLUP multitrait models.

View Article and Find Full Text PDF

Deep learning (DL) is revolutionizing the development of artificial intelligence systems. For example, before 2015, humans were better than artificial machines at classifying images and solving many problems of computer vision (related to object localization and detection using images), but nowadays, artificial machines have surpassed the ability of humans in this specific task. This is just one example of how the application of these models has surpassed human abilities and the performance of other machine-learning algorithms.

View Article and Find Full Text PDF

Genomic selection (GS) is revolutionizing plant breeding since the selection process is done with the help of statistical machine learning methods. A model is trained with a reference population and then it is used for predicting the candidate individuals available in the testing set. However, given that breeding phenotypic values are very noisy, new models must be able to integrate not only genotypic and environmental data but also high-resolution images that have been collected by breeders with advanced image technology.

View Article and Find Full Text PDF

In genomic selection choosing the statistical machine learning model is of paramount importance. In this paper, we present an application of a zero altered random forest model with two versions (ZAP_RF and ZAPC_RF) to deal with excess zeros in count response variables. The proposed model was compared with the conventional random forest (RF) model and with the conventional Generalized Poisson Ridge regression (GPR) using two real datasets, and we found that, in terms of prediction performance, the proposed zero inflated random forest model outperformed the conventional RF and GPR models.

View Article and Find Full Text PDF

The primary objective of this paper is to provide a guide on implementing Bayesian generalized kernel regression methods for genomic prediction in the statistical software R. Such methods are quite efficient for capturing complex non-linear patterns that conventional linear regression models cannot. Furthermore, these methods are also powerful for leveraging environmental covariates, such as genotype × environment (G×E) prediction, among others.

View Article and Find Full Text PDF

Background: Several conventional genomic Bayesian (or no Bayesian) prediction methods have been proposed including the standard additive genetic effect model for which the variance components are estimated with mixed model equations. In recent years, deep learning (DL) methods have been considered in the context of genomic prediction. The DL methods are nonparametric models providing flexibility to adapt to complicated associations between data and output with the ability to adapt to very complex patterns.

View Article and Find Full Text PDF

The paradigm called genomic selection (GS) is a revolutionary way of developing new plants and animals. This is a predictive methodology, since it uses learning methods to perform its task. Unfortunately, there is no universal model that can be used for all types of predictions; for this reason, specific methodologies are required for each type of output (response variables).

View Article and Find Full Text PDF

Due to the ever-increasing data collected in genomic breeding programs, there is a need for genomic prediction models that can deal better with big data. For this reason, here we propose a Maximum Threshold Genomic Prediction (MAPT) model for ordinal traits that is more efficient than the conventional Bayesian Threshold Genomic Prediction model for ordinal traits. The MAPT performs the predictions of the Threshold Genomic Prediction model by using the maximum estimation of the parameters, that is, the values of the parameters that maximize the joint posterior density.

View Article and Find Full Text PDF

Objective: This work sought to validate and propose an instrument to measure the performance of tutors in promoting self-directed learning in students involved in processes of problem-based learning.

Methods: Confirmatory factor analysis (CFA) was applied to validate the instrument composed of 60 items and six factors (self-assessment of learning gaps within the United Nations specific context: self-assessment, reflexion, critical thinking, administration of information, group skills), using a sample of 207 students from a total of 279, which comprise the student population of the Faculty of Nursing at Universidad de Colima in Mexico. (2007).

View Article and Find Full Text PDF

Background: The group testing method has been proposed for the detection and estimation of genetically modified plants (adventitious presence of unwanted transgenic plants, AP). For binary response variables (presence or absence), group testing is efficient when the prevalence is low, so that estimation, detection, and sample size methods have been developed under the binomial model. However, when the event is rare (low prevalence <0.

View Article and Find Full Text PDF

Objective: To describe the importance of mathematical models in the understanding of infectious disease transmission dynamics, as well as in the design of effective strategies for control.

Material And Methods: International literature was reviewed on the subject through digital means. Around 60 papers about the subject were identified; nevertheless, this study is based on only 27 of these, due to the fact that they were directly related to the subject.

View Article and Find Full Text PDF