Publications by authors named "Ostrowski E"

We have investigated, using molecular dynamics, the surface chemistry of hydrogen incident on the amorphous and crystalline lithium oxide and lithium hydroxide surfaces upon being slowed down by a collision cascade and retained in the amorphous surface of either Li2O or LiOH. We looked for the bonding of H to the resident structures in the surface to understand a possible chain of chemical reactions that can lead to surface transformation upon H atom impact. Our findings, using Density-Functional Theory (DFT) trained ReaxFF force field/electronegativity equalization method potentials, stress the importance of inclusion of polarization in the dynamics of a Li-O-H system, which is also illustrated by DFT energy minimization and quantum-classical molecular dynamics using tight binding DFT.

View Article and Find Full Text PDF

Collective phenotypes, which arise from the interactions among individuals, can be important for the evolution of higher levels of biological organization. However, how a group's composition determines its collective phenotype remains poorly understood. When starved, cells of the social amoeba Dictyostelium discoideum cooperate to build a multicellular fruiting body, and the morphology of the fruiting body is likely advantageous to the surviving spores.

View Article and Find Full Text PDF

Multicellularity has evolved many times. A new study explores why some forms of multicellularity may be better than others.

View Article and Find Full Text PDF

We have demonstrated a vacuum suitcase to transport samples in vacuo to a surface analysis station for characterization of tokamak plasma facing components (PFCs). This technique enables surface analysis at powerful, dedicated stations that are not encumbered by design constraints imposed on them by a tokamak. The vacuum suitcase is an alternative solution to characterizing PFCs using diagnostics that are designed and built around a tokamak.

View Article and Find Full Text PDF

Cooperation has been essential to the evolution of biological complexity, but many societies struggle to overcome internal conflicts and divisions. Dictyostelium discoideum, or the social amoeba, has been a useful model system for exploring these conflicts and how they can be resolved. When starved, these cells communicate, gather into groups, and build themselves into a multicellular fruiting body.

View Article and Find Full Text PDF

Phagocytes are cells that pursue, engulf and kill bacteria. They include macrophages and neutrophils of the mammalian immune system, as well as free-living amoebae that hunt and engulf bacteria for food. Phagocytosis can result in diverse outcomes, ranging from sustenance to infection and colonization by either pathogens or beneficial symbionts-and thus, discrimination may be necessary to seek out good bacteria while avoiding bad ones.

View Article and Find Full Text PDF

Reproductive division of labour is common in many societies, including those of eusocial insects, cooperatively breeding vertebrates, and most forms of multicellularity. However, conflict over what is best for the individual vs. the group can prevent an optimal division of labour from being achieved.

View Article and Find Full Text PDF

Cooperative systems are susceptible to invasion by selfish individuals that profit from receiving the social benefits but fail to contribute. These so-called "cheaters" can have a fitness advantage in the laboratory, but it is unclear whether cheating provides an important selective advantage in nature. We used a population genomic approach to examine the history of genes involved in cheating behaviors in the social amoeba Dictyostelium discoideum, testing whether these genes experience rapid evolutionary change as a result of conflict over spore-stalk fate.

View Article and Find Full Text PDF

Background: When overlapping sets of genes encode multiple traits, those traits may not be able to evolve independently, resulting in constraints on adaptation. We examined the evolution of genetically integrated traits in digital organisms-self-replicating computer programs that mutate, compete, adapt, and evolve in a virtual world. We assessed whether overlap in the encoding of two traits - here, the ability to perform different logic functions - constrained adaptation.

View Article and Find Full Text PDF

Dictyostelium discoideum is a eukaryotic microbial model system for multicellular development, cell-cell signaling, and social behavior. Key models of social evolution require an understanding of genetic relationships between individuals across the genome or possibly at specific genes, but the nature of variation within D. discoideum is largely unknown.

View Article and Find Full Text PDF

Several experiments have demonstrated that focusing a performer's attention externally (i.e., on the effects of a movement) rather than internally (i.

View Article and Find Full Text PDF

The primary purpose of this study was to investigate if focusing attention externally produced faster movement times compared to instructions that focused attention internally or a control set of instructions that did not explicitly focus attention when performing an agility task. A second purpose of the study was to measure participants' focus of attention during practice by use of a questionnaire. Participants (N = 20) completed 15 trials of an agility "L" run following instructions designed to induce an external (EXT), internal (INT) attentional focus or a control (CON) set of instructions inducing no specific focus of attention.

View Article and Find Full Text PDF

Accurate identification of genetic variants from next-generation sequencing (NGS) data is essential for immediate large-scale genomic endeavors such as the 1000 Genomes Project, and is crucial for further genetic analysis based on the discoveries. The key challenge in single nucleotide polymorphism (SNP) discovery is to distinguish true individual variants (occurring at a low frequency) from sequencing errors (often occurring at frequencies orders of magnitude higher). Therefore, knowledge of the error probabilities of base calls is essential.

View Article and Find Full Text PDF

How cooperation can evolve by natural selection is important for understanding the evolutionary transition from unicellular to multicellular life. Here we review the evolutionary theories for cooperation, with emphasis on the mechanisms that can favor cooperation and reduce conflict in multicellular organisms.

View Article and Find Full Text PDF

Self and kin discrimination are observed in most kingdoms of life and are mediated by highly polymorphic plasma membrane proteins. Sequence polymorphism, which is essential for effective recognition, is maintained by balancing selection. Dictyostelium discoideum are social amoebas that propagate as unicellular organisms but aggregate upon starvation and form fruiting bodies with viable spores and dead stalk cells.

View Article and Find Full Text PDF

In the social amoeba Dictyostelium discoideum, thousands of cells aggregate upon starvation to form a multicellular fruiting body, and approximately 20% of them die to form a stalk that benefits the others. The aggregative nature of multicellular development makes the cells vulnerable to exploitation by cheaters, and the potential for cheating is indeed high. Cells might avoid being victimized if they can discriminate among individuals and avoid those that are genetically different.

View Article and Find Full Text PDF

Pleiotropy plays a central role in theories of adaptation, but little is known about the distribution of pleiotropic effects associated with different adaptive mutations. Previously, we described the phenotypic effects of a collection of independently arising beneficial mutations in Escherichia coli. We quantified their fitness effects in the glucose environment in which they evolved and their pleiotropic effects in five novel resource environments.

View Article and Find Full Text PDF

It is generally thought that random mutations will, on average, reduce an organism's fitness because resulting phenotypic changes are likely to be maladaptive. This relationship leads to the prediction that mutations that alter more phenotypic traits, that is, are more pleiotropic, will impose larger fitness costs than mutations that affect fewer traits. Here we present a systems approach to test this expectation.

View Article and Find Full Text PDF

The transition from generalist to specialist may entail the loss of unused traits or abilities, resulting in narrow niche breadth. Here we examine the process of specialization in digital organisms--self-replicating computer programs that mutate, adapt, and evolve. Digital organisms obtain energy by performing computations with numbers they input from their environment.

View Article and Find Full Text PDF

Micromutational models of adaptation have placed considerable weight on antagonistic pleiotropy as a mechanism that prevents mutations of large effect from achieving fixation. However, there are few empirical studies of the distribution of pleiotropic effects, and no studies that have examined this distribution for a large number of adaptive mutations. Here we examine the form and extent of pleiotropy associated with beneficial mutations in Escherichia coli.

View Article and Find Full Text PDF

The in vitro synthesis of juvenile hormone (JH) by corpora allata (CA) from the lubber grasshopper (Romalea microptera) was stimulated by low concentrations of brain extract and this effect was reduced at higher concentrations, suggesting the presence of allatotropin (AT) and allatostatin (AST) factors in the brain. The AT activity of brain extracts caused a rapid and reversible stimulation and appeared to be a peptide(s). Reversed phase (C18) HPLC analysis of brain extracts disclosed two peaks of AT activity but no significant AST activity.

View Article and Find Full Text PDF