This Letter presents a ray phase mapping model (RPM) for fringe projection profilometry (FPP) that avoids calibrating intrinsic parameters. The novelty of the RPM, to the best of our knowledge, is the ability to characterize the imaging system with independent rays for each pixel, and to associate the rays with the projected phase in the illumination field for efficient 3D mapping, which avoids complex imaging-specific modeling about lens layout and distortion. Two loss functions are constructed to flexibly optimize camera ray parameters and mapping coefficients, respectively.
View Article and Find Full Text PDFA method is proposed for 3D imaging through a highly heterogeneous double-composite random medium made of a thick mildly inhomogeneous medium followed by a thin strongly scattering layer. To realize the immunity to the heterogeneous random medium, a system of common-path phase-shift digital holography is designed in such a manner that the wavefront distortion caused by the first inhomogeneous medium is canceled out by the common-path geometry, and the influence of the random phase introduced by the second scattering layer is removed by the intensity-based recording of the digital hologram on the thin scattering layer. The validity of the method was confirmed by experiments.
View Article and Find Full Text PDFThe modal holographic wavefront sensor enables fast measurement of individual aberration modes without the need for time-consuming calculations. However, the measurement accuracy suffers greatly from intermodal crosstalk, caused when the wavefront contains more aberrations than the one to be measured. In this paper, we present sensor optimization to minimize this effect and show the improvement when using Karhunen-Lòeve instead of Zernike modes as the basis.
View Article and Find Full Text PDFBased on the optical memory effect of scattered light, we developed a new single-pixel camera concept. The retrieved images contain both 3D and spectral information about the sample. A spatial light modulator (SLM) generates a random intensity modulation.
View Article and Find Full Text PDFScatter-plate microscopy (SPM) is a lensless imaging technique for high-resolution imaging through scattering media. So far, the method was demonstrated for spatially incoherent illumination and static scattering media. In this publication, we demonstrate that these restrictions are not necessary.
View Article and Find Full Text PDFMicrolens array-based light-field imaging has been one of the most commonly used and effective technologies to record high-dimensional optical signals for developing various potential high-performance applications in many fields. However, the use of a microlens array generally suffers from an intrinsic trade-off between the spatial and angular resolutions. In this paper, we concentrate on exploiting a diffuser to explore a novel modality for light-field imaging.
View Article and Find Full Text PDFThis Letter reports an approach to single-shot three-dimensional (3D) imaging that is combining structured illumination and light-field imaging. The sinusoidal distribution of the radiance in the structured-light field can be processed and transformed to compute the angular variance of the local radiance difference. The angular variance across the depth range exhibits a single-peak distribution trend that can be used to obtain the unambiguous depth.
View Article and Find Full Text PDFMost of the neural networks proposed so far for computational imaging (CI) in optics employ a supervised training strategy, and thus need a large training set to optimize their weights and biases. Setting aside the requirements of environmental and system stability during many hours of data acquisition, in many practical applications, it is unlikely to be possible to obtain sufficient numbers of ground-truth images for training. Here, we propose to overcome this limitation by incorporating into a conventional deep neural network a complete physical model that represents the process of image formation.
View Article and Find Full Text PDFFor the active control of large-scale structures, especially high-rise buildings and bridges, fast and accurate measurement of local deformations is required. We present a highly accurate and fast vision-based measurement technique and, to the best of our knowledge, first experimental results for the control of an adaptive-structures prototype frame, equipped with hydraulic actuators. Deformations are detected at multiple discrete points, based on a photogrammetric approach with additional holographic spot replication.
View Article and Find Full Text PDFLight-field imaging can simultaneously record spatio-angular information of light rays to carry out depth estimation via depth cues which reflect a coupling of the angular information and the scene depth. However, the unavoidable imaging distortion in a light-field imaging system has a side effect on the spatio-angular coordinate computation, leading to incorrectly estimated depth maps. Based on the previously established unfocused plenoptic metric model, this paper reports a study on the effect of the plenoptic imaging distortion on the light-field depth estimation.
View Article and Find Full Text PDFMicroscopic three-dimensional imaging and phase quantification for objects hidden behind a scattering medium by using in-line phase-shift digital holography are proposed. A spatial resolution of 1.81 µm and highly accurate quantitative phase imaging are demonstrated for objects behind a scatter plate.
View Article and Find Full Text PDFWe investigated the capabilities of deconvolution for image enhancement in scatter-plate microscopy. This lensless imaging technique enables the investigation of microstructures through scattering media by cross-correlating the scattered light intensity with a previously recorded point spread function (PSF) of the scattering medium. The autocorrelation function of the PSF appears as the transfer function of the imaging process.
View Article and Find Full Text PDFFor unfocused plenoptic imaging systems, metric calibration is generally mandatory to achieve high-quality imaging and metrology. In this paper, we present an explicit derivation of an unfocused plenoptic metric model associating a measured light field in the object space with a recorded light field in the image space to conform physically to the imaging properties of unfocused plenoptic cameras. In addition, the impact of unfocused plenoptic imaging distortion on depth computation was experimentally explored, revealing that radial distortion parameters contain depth-dependent common factors, which were then modeled as depth distortions.
View Article and Find Full Text PDFLarge depth of field (DOF) is a longstanding goal in optical imaging field. In this paper we presented a simple but efficient method to extend the DOF of a diffraction-limited imaging system using a thin scattering diffuser. The DOF characteristic of the imaging system with random phase modulation was analyzed based on the analytical model of ambiguity function as a polar display of the optical transfer function (OTF).
View Article and Find Full Text PDFPassive light field imaging generally uses depth cues that depend on the image structure to perform depth estimation, causing robustness and accuracy problems in complex scenes. In this study, the commonly used depth cues, defocus and correspondence, were analyzed by using phase encoding instead of the image structure. The defocus cue obtained by spatial variance is insensitive to the global spatial monotonicity of the phase-encoded field.
View Article and Find Full Text PDFOCT instruments permit fast and non-invasive 3D optical biopsies of biological tissues. However, they are bulky and expensive, making them only affordable at the hospital and thus, not sufficiently used as an early diagnostic tool. Significant reduction of system cost and size is achieved by implementation of MOEMS technologies.
View Article and Find Full Text PDFIn the International Thermonuclear Experimental Reactor under construction in southern France, there will be a need for continuous measuring of the erosion at the wall, after the reactor starts operating. A two-wavelength interferometric technique based on digital holography is proposed for the erosion measurement. This technique has the ability to tackle the challenging environmental conditions within the reactor by a long-distance measurement, where a relay optic will be used for imaging the investigated surface on the detector.
View Article and Find Full Text PDFEarly detection of cancer can significantly increase the survival chances of patients. Palpation is a traditional method in order to detect cancer; however, in minimally invasive surgery the surgeon is deprived of the sense of touch. We demonstrate how shearing elastography can recover elastic parameters and furthermore can be used to localize stiffness imhomogenities even if hidden underneath the surface.
View Article and Find Full Text PDFSpeckle correlation imaging (SCI) has been considered one of the most promising techniques for computational imaging through a scattering medium. However, the image quality is not always acceptable in conventional SCI, especially when a complex object is involved. In this work, a modified phase retrieval algorithm is introduced to significantly improve the imaging quality of SCI.
View Article and Find Full Text PDFAmbiguity caused by a wrapped phase is an intrinsic problem in fringe projection-based 3D shape measurement. Among traditional methods for avoiding phase ambiguity, spatial phase unwrapping is sensitive to sensor noise and depth discontinuity, and temporal phase unwrapping requires additional encoding information that leads to an increase of image sequence acquisition time or a reduction of fringe contrast. Here, to the best of our knowledge, we report a novel method of absolute phase unwrapping based on light field imaging.
View Article and Find Full Text PDFWe present an optically addressed non-pixelated spatial light modulator. The system is based on reversible photoalignment of a LC cell using a red light sensitive novel azobenzene photoalignment layer. It is an electrode-free device that manipulates the liquid crystal orientation and consequently the polarization via light without artifacts caused by electrodes.
View Article and Find Full Text PDFWe experimentally demonstrate a novel cascaded plasmonic superlens, which can directly image subwavelength objects with magnification in the far field at a wavelength of 640nm. The lens consists of two plasmonic slabs. One is a plasmonic cavity lens used for near-field coupling, and the other one is a planar plasmonic lens for phase compensation and thus, image magnification.
View Article and Find Full Text PDFWe experimentally demonstrate a novel design of a cascaded plasmonic superlens, which can directly image subwavelength objects with magnification in the far field at visible wavelengths. The lens consists of two cascaded plasmonic slabs. One is a plasmonic metasurface used for near field coupling, and the other one is a planar plasmonic lens used for phase compensation and thus image magnification.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
April 2018
This paper demonstrates the usefulness of spectrally resolved digital holography for dual-wavelength optical metrology. Based on the large degree of phase information available, multiple de-correlated dual-wavelength phase maps can be generated, which, when averaged, result in a signal-to-noise-ratio improvement. Compared with single-wavelength averaging, no further post-processing of the reconstructed dual-wavelength phase map is required.
View Article and Find Full Text PDFWe report on the generation of kW-class, continuous-wave, radially polarized laser radiation in an Yb:LuAG thin-disk laser (TDL). Output powers of up to 980 W were achieved with optical efficiency of 50.5% with respect to the incident pump power of the TDL.
View Article and Find Full Text PDF