The development of porous devices using materials modified with various natural agents has become a priority for bone healing processes in the oral and maxillofacial field. There must be a balance between the proliferation of eukaryotic and the inhibition of prokaryotic cells to achieve proper bone health. Infections might inhibit the formation of new alveolar bone during bone graft augmentation.
View Article and Find Full Text PDFPlant leaves, such as those from , represent a potential utilization of waste due to their richness in bioactive compounds. Supercritical CO allows these compounds to be incorporated into various matrices by impregnation. Combined with its ability to generate polymeric scaffolds, it represents an attractive strategy for the production of biomedical devices.
View Article and Find Full Text PDFThe usage of conjugated materials for the fabrication of foams intended to be used as therapeutic scaffolds is gaining relevance these days, as they hold certain properties that are not exhibited by other polymer types that have been regularly used until the present. Hence, this work aims to design a specific supercritical CO foaming process that would allow the production of porous polymeric devices with improved conductive properties, which would better simulate matrix extracellular conditions when used as therapeutic scaffolds (PLGA-PEDOT:PSS) systems. The effects of pressure, temperature, and contact time on the expansion factor, porosity, mechanical properties, and conductivity of the foam have been evaluated.
View Article and Find Full Text PDFBorage ( L.) seed oil is an important source of γ-linolenic acid, which is normally used as a treatment against different pathologies. Since the fractionation of this interesting seed oil has many environmental, economic and biological benefits, two borage fractionation techniques after extraction with CO under supercritical conditions have been studied: precipitation in two cyclone separators and countercurrent extraction column.
View Article and Find Full Text PDFThe natural armors and weapons of the animal kingdom are serving as inspiration in the development of next-generation engineering materials. In this pursuit, seldom considered are the variations in properties across taxa that have evolved to meet their unique functional demands. Here, teeth from six different mammalian species were acquired and categorized according to their bite force quotient (BFQ), which accounts for the allometric scaling between bite force and body size.
View Article and Find Full Text PDFAmong many dermal armors, fish scales have become a source of inspiration in the pursuit of "next-generation" structural materials. Although fish scales function in a hydrated environment, the role of water and intermolecular hydrogen bonding to their unique structural behavior has not been elucidated. Water molecules reside within and adjacent to the interpeptide locations of the collagen fibrils of the elasmodine and provide lubrication to the protein molecules during deformation.
View Article and Find Full Text PDFObjective: The purpose of this investigation was to establish microstructure, microhardness, fracture toughness, chemical composition, and crack repair of bovine enamel and to compare these features with their human counterparts.
Design: Bovine enamel fragments were prepared and optical microscopy and atomic force microscopy were used to establish microstructure; Raman spectroscopy was used to estimate composition and microindentation using Vickers testing was performed to evaluate hardness.
Results: A strong dependence between indentation load and microhardness values was observed, as was the case in human enamel.
Fish scales are laminated composites that consist of plies of unidirectional collagen fibrils with twisted-plywood stacking arrangement. Owing to their composition, the toughness of scales is dependent on the intermolecular bonding within and between the collagen fibrils. Adjusting the extent of this bonding with an appropriate stimulus has implications for the design of next-generation bioinspired flexible armours.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
February 2019
Natural dermal armors are serving as a source of inspiration in the pursuit of "next-generation" structural materials. Although the dynamic strain response of these materials is arguably the most relevant to their performance as armors, limited work has been performed in this area. Here, uniaxial tension and transverse puncture tests were performed on specimens obtained from the scales of Asian carp over strain rates spanning seven decades, from 10 to 10 s.
View Article and Find Full Text PDFObjective: This study aimed to identify the changes in the time-dependent deformation response of coronal dentin with ageing and its relationship with changes in chemical composition.
Background: The structural behaviour of dentin with ageing is affected by changes in the density and diameter of its dentinal tubules (ie porosity), as well as changes in chemical composition throughout the tooth. However, little is known about the time-dependent deformation behaviour of aged dentin and the importance of its hierarchical structure and variations in chemical composition.
Unlabelled: Fish scales serve as a flexible natural armor that have received increasing attention across the materials community. Most efforts in this area have focused on the composite structure of the predominately organic elasmodine, and limited work addresses the highly mineralized external portion known as the Limiting Layer (LL). This coating serves as the first barrier to external threats and plays an important role in resisting puncture.
View Article and Find Full Text PDFObjective: The viscoelastic behavior of dentin and its ability to undergo time dependent deformation are considered to be important to oral functions and its capacity to resist fracture. There are spatial variations in the microstructure of dentin within the crown, which could be important to the viscous behavior. However, a spatially resolved description for the viscoelastic behavior of coronal dentin has not been reported.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
September 2017
Fish scales exhibit a unique balance of flexibility, strength and toughness, which is essential to provide protection without encumbering locomotion. Although the mechanical behavior and structure of this natural armor are of recent interest, a comparison of these qualities from scales of different fish species has not been reported. In this investigation the armor of fish with different locomotion, size and protection needs were analyzed.
View Article and Find Full Text PDFObjective: The fracture toughness of dentin is critical to the prevention of tooth fracture. Within the tooth crown, the mechanical properties of dentin are influenced by spatial variations in the density and diameter of the dentin tubules with distance from the pulp. There are also relevant changes to the microstructure of dentin with age.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
March 2016
This paper presents an experimental study of the composition, microstructure and mechanical behavior of scales from the Megalops Atlanticus (Atlantic tarpon). The microstructure and composition were evaluated by Scanning Electron Microscopy (SEM) and RAMAN spectroscopy, respectively. The mechanical properties were evaluated in uniaxial tension as a function of position along the length of the fish (head, mid-length and tail).
View Article and Find Full Text PDFObjective: Understanding the effects of biological aging on human tissues has been a topic of extensive research. With the increase in healthy seniors and quality of life that topic is becoming increasingly important. In this investigation the effects of aging on the microstructure, chemical composition and hardness of human coronal dentin was studied from a comparison of teeth within "young" and "old" age groups.
View Article and Find Full Text PDFArtificially contaminated soil with four different polynuclear aromatic hydrocarbons (acenaphthene, phenathrene, anthracene and fluoranthene) has been separately treated by two different processes: (A) concentrated hydrogen peroxide at mild conditions of temperature (343-393 K) and pressure (0.5 MPa) and (B) hot water extraction at relatively high temperature (523-657 K) and pressure (10 MPa). Both methods achieve acceptable PAH removal percentages from soil.
View Article and Find Full Text PDFDynamic extraction of carotenoids from a marine strain of Synechococcus sp. (Cyanophyceae) with supercritical CO2 (SC-CO2) was investigated with regard to operation pressure and temperature effects on extraction efficiency. Extraction yield (milligrams of pigment per gram of dry weight) for SC-CO2) was compared with the extraction yield for dimethylformamide (DMF).
View Article and Find Full Text PDF