Microbial activity in drylands tends to be confined to rare and short periods of rain. Rapid growth should be key to the maintenance of ecosystem processes in such narrow activity windows, if desiccation and rehydration cause widespread cell death due to osmotic stress. Here, simulating rain with HO followed by single-cell NanoSIMS, we show that biocrust microbial communities in the Negev Desert are characterized by limited productivity, with median replication times of 6 to 19 days and restricted number of days allowing growth.
View Article and Find Full Text PDFUnlabelled: Wastewater is considered a reservoir of antimicrobial resistance genes (ARGs), where the abundant antimicrobial-resistant bacteria and mobile genetic elements facilitate horizontal gene transfer. However, the prevalence and extent of these phenomena in different taxonomic groups that inhabit wastewater are still not fully understood. Here, we determined the presence of ARGs in metagenome-assembled genomes (MAGs) and evaluated the risks of MAG-carrying ARGs in potential human pathogens.
View Article and Find Full Text PDFThe main reason for the deterioration of membrane operation during water purification processes is biofouling, which has therefore been extensively studied. Biofouling was shown to reduce membrane performance reflected by permeate flux decline, reduced selectivity, membrane biodegradation, and consequently, an increase in energy consumption. Studies of biofouling focused on the identification of the assembled microbial communities, the excretion of extracellular polymeric substances (EPS), and their combined role in reduced membrane performance and lifetime.
View Article and Find Full Text PDFColicins, bacteriocins produced by the gram-negative bacterium , are tightly regulated by the DNA damage response regulatory system (SOS), and are thus triggered at times of stress. Colicins' regulation and expression profiles were primarily studied in suspended (planktonic) cultures yet, in their natural environments cells are sessile, assembled in biofilms. We hypothesized that colicin expression would differ between planktonic and biofilm cultures, even when induced by the same triggers.
View Article and Find Full Text PDFDuckweeds (Lemnaceae) are tiny plants that float on aquatic surfaces and are typically isolated from temperate and equatorial regions. Yet, duckweed diversity in Mediterranean and arid regions has been seldom explored. To address this gap in knowledge, we surveyed duckweed diversity in Israel, an ecological junction between Mediterranean and arid climates.
View Article and Find Full Text PDFExtracellular polymeric substances (EPSs) can conform and orient on the surface according to the applied aquatic conditions. While pH elevation usually removes EPSs from membranes, small changes in pH can change the adsorbed EPS conformation and orientation, resulting in a decrease in membrane permeability. Accordingly, EPS layers were tested with localized surface plasmon resonance (LSPR) sensing and quartz crystal microbalance with dissipation monitoring (QCM-D) using a hybrid sensor.
View Article and Find Full Text PDFRain events in arid environments are highly unpredictable and intersperse extended periods of drought. Therefore, tracking changes in desert soil bacterial communities during rain events, in the field, was seldom attempted. Here, we assessed rain-mediated dynamics of active bacterial communities in the Negev Desert biological soil crust (biocrust).
View Article and Find Full Text PDFAgricultural use of treated wastewater (TWW) is an effective means to reduce freshwater (FW) consumption. However, there is a growing concern regarding the potential dissemination of antibiotic resistance elements by TWW irrigation. We hypothesized that higher levels of antibiotic resistance genes (ARGs) would be detected in soil and crops irrigated with TWW compared to FW irrigation.
View Article and Find Full Text PDFis a dominant shrub in the Negev Desert whose survival is accomplished by multiple mechanisms including abscission of leaflets to reduce whole plant transpiration while leaving the fleshy, wax-covered petioles alive but dormant during the dry season. Petioles that can survive for two full growing seasons maintain cell component integrity and resume metabolic activity at the beginning of the winter. This remarkable survival prompted us to investigate endophytic bacteria colonizing the internal tissues of the petiole and assess their role in stress tolerance.
View Article and Find Full Text PDFIrrigation with treated effluent is expanding as freshwater sources diminish, but hampered by growing concerns of pharmaceuticals contamination, specifically antibiotics and resistance determinants. To evaluate this concern, freshwater and effluent were applied to an open field that was treated with soil barriers including plastic mulch together with surface and subsurface drip irrigation, cultivating freshly eaten crops (cucumbers or melons) for two consecutive growing seasons. We hypothesized that the effluent carries antibiotics and resistance determinants to the drip-irrigated soil and crops regardless of the treatment.
View Article and Find Full Text PDFOveruse of agrochemicals is linked to nutrient loss, greenhouse gases (GHG) emissions, and resource depletion thus requiring the development of sustainable agricultural solutions. Cultivated microalgal biomass could provide such a solution. The environmental consequences of algal biomass application in agriculture and more specifically its effect on soil GHG emissions are understudied.
View Article and Find Full Text PDFBiocrusts are key ecosystem engineers that are being destroyed due to anthropogenic disturbances such as trampling, agriculture and mining. In hyper-arid regions of the Negev Desert, phosphate has been mined for over six decades, altering the natural landscape over large spatial scales. In recent years, restoration-oriented practices were mandated in mining sites, however, the impact of such practices on the ecosystem, particularly the biocrust layer, has not been tested.
View Article and Find Full Text PDFDesert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid).
View Article and Find Full Text PDFDiminishing freshwater (FW) supplies necessitate the reuse of treated wastewater (TWW) for various purposes, like irrigation of agricultural lands. However, there is a growing concern that irrigation with TWW may transfer antibiotic resistance genes (ARGs) to the soil and crops. We hypothesized that TWW irrigation would increase the prevalence of antibiotic residues together with the corresponding ARGs in the irrigated soil.
View Article and Find Full Text PDFDesert surface soils devoid of plant cover are populated by a variety of microorganisms, many with yet unresolved physiologies and lifestyles. Nevertheless, a common feature vital for these microorganisms inhabiting arid soils is their ability to survive long drought periods and reactivate rapidly in rare incidents of rain. Chemolithotrophic processes such as oxidation of atmospheric hydrogen and carbon monoxide are suggested to be a widespread energy source to support dormancy and resuscitation in desert soil microorganisms.
View Article and Find Full Text PDFBacteria have been inferred to exhibit relatively weak biogeographic patterns. To what extent such findings reflect true biological phenomena or methodological artifacts remains unclear. Here, we addressed this question by analyzing the turnover of soil bacterial communities from three data sets.
View Article and Find Full Text PDFMicrobial life is surprisingly abundant and diverse in global desert ecosystems. In these environments, microorganisms endure a multitude of physicochemical stresses, including low water potential, carbon and nitrogen starvation, and extreme temperatures. In this review, we summarize our current understanding of the energetic mechanisms and trophic dynamics that underpin microbial function in desert ecosystems.
View Article and Find Full Text PDFAllelopathic interactions mediated by bacteriocins production serve microorganisms in the never-ending battle for resources and living space. Competition between the bacteriocin producer and sensitive populations results in the exclusion of one or the other depending on their initial frequencies, the structure of their habitat, their community density and their nutrient availability. These interactions were extensively studied in bacteriocins produced by , the colicins.
View Article and Find Full Text PDFIt is assumed that the sequencing of ribosomes better reflects the active microbial community than the sequencing of the ribosomal RNA encoding genes. Yet, many studies exploring microbial communities in various environments, ranging from the human gut to deep oceans, questioned the validity of this paradigm due to the discrepancies between the DNA and RNA based communities. Here, we focus on an often neglected key step in the analysis, the reverse transcription (RT) reaction.
View Article and Find Full Text PDFSecondary treated wastewater (TWW) could provide a cheap and sustainable alternative to potable water (PW) irrigation and ensure food security, especially in arid and semi-arid regions. However, TWW may pose a health risk by introducing pathogens to the irrigated soil and crop, and especially to irrigated vegetables that are eaten raw. To avoid contamination, national and international authorities have mandated the use of physical barriers, such as drip irrigation and plastic mulch, to separate the irrigation water and the crops.
View Article and Find Full Text PDFWorld-wide water scarcity is urging the use of treated wastewater (TWW) for irrigation but this practice may have adverse effects on soil and crop contamination due to the introduction of potential microbial pathogens. The objective of this study was to evaluate the potential health risks caused by TWW irrigation of soils differing in their texture, i.e.
View Article and Find Full Text PDFHot desert ecosystems experience rare and unpredictable rainfall events that resuscitate the arid flora and fauna. However, the effect of this sudden abundance of water on soil microbial communities is still under debate. We modeled varying rainfall amounts and temperatures in desert soil mesocosms and monitored the microbial community response over a period of 21 days.
View Article and Find Full Text PDFLaboratory-scale reverse osmosis (RO) flat-sheet systems were used with two parallel flow cells, one treated with cleaning agents and a control (ie undisturbed). The cleaning efforts increased the affinity of extracellular polymeric substances (EPS) to the RO membrane and altered the biofilm surface structure. Analysis of the membrane biofilm community composition revealed the dominance of Proteobacteria.
View Article and Find Full Text PDFLife in desert soil is marked by episodic pulses of water and nutrients followed by long periods of drought. While the desert flora and fauna flourish after rainfall the response of soil microorganisms remains unclear and understudied. We provide the first systematic study of the role of soil aqueous habitat dynamics in shaping microbial community composition and diversity.
View Article and Find Full Text PDFProduction of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells' close relatives.
View Article and Find Full Text PDF