Both the activity of photosynthesis and the repair of damaged photosystems decline in cold environments, which may increase the extent of the damage of photosynthetic machinery by light, namely photoinhibition. We hypothesized that plants in colder habitats may possess greater tolerance to photoinhibition, especially in low-temperature conditions. We measured the rate of photoinhibition, rate of photoinhibition repair and other thylakoid activities in cold environments using 298 Arabidopsis thaliana ecotypes and studied the relationships among the indicators of photoinhibition tolerance and climatic data of the habitat of each ecotype.
View Article and Find Full Text PDFmutation is the main driving mechanism of CRC development and leads to constitutively activated WNT signaling, overpopulation of ALDH+ stem cells (SCs), and incomplete differentiation. We previously reported that retinoic acid (RA) receptors are selectively expressed in ALDH+ SCs, which provides a way to target cancer SCs with retinoids to induce differentiation. : A functional link exists between the WNT and RA pathways, and mutation generates a WNT:RA imbalance that decreases retinoid-induced differentiation and increases ALDH+ SCs.
View Article and Find Full Text PDFPhotosynthesis is fundamental for plant growth and yield. The cytochrome b f complex catalyses a rate-limiting step in thylakoid electron transport and therefore represents an important point of regulation of photosynthesis. Here we show that overexpression of a single core subunit of cytochrome b f, the Rieske FeS protein, led to up to a 40% increase in the abundance of the complex in Nicotiana tabacum (tobacco) and was accompanied by an enhanced in vitro cytochrome f activity, indicating a full functionality of the complex.
View Article and Find Full Text PDFHOX proteins are transcription factors that regulate stem cell (SC) function, but their role in the SC origin of cancer is under-studied. Aberrant expression of HOX genes occurs in many cancer types. Our goal is to ascertain how retinoic acid (RA) signaling and the regulation of expression might play a role in the SC origin of human colorectal cancer (CRC).
View Article and Find Full Text PDFPlants adjust the relative sizes of PSII and PSI antennae in response to the spectral composition of weak light favouring either photosystem by processes known as state transitions (ST), attributed to a discrete antenna migration involving phosphorylation of light-harvesting chlorophyll-protein complexes in PSII. Here for the first time we monitored the extent and dynamics of ST in leaves from estimates of optical absorption cross-section (relative PSII antenna size; aPSII). These estimates were obtained from in situ measurements of functional absorption cross-section (σPSII) and maximum photochemical efficiency of PSII (φPSII); i.
View Article and Find Full Text PDFThe 1+/n+ method, based on an ECRIS charge breeder (CB) originally developed at the LPSC laboratory, is now implemented at GANIL for the production of Radioactive Ion Beams (RIBs). Prior to its installation in the middle of the low energy beam line of the SPIRAL1 facility, the 1+/n+ system CB has been modified based on the experiments performed on the CARIBU Facility at Argone National Laboratory. Later, it has been tested at the 1+/n+ LPSC test bench to validate its operation performances.
View Article and Find Full Text PDFUnderstanding the net photosynthesis of plant canopies requires quantifying photosynthesis in challenging environments, principally due to the variable light intensities and qualities generated by sunlight interactions with clouds and surrounding foliage. The dynamics of sunflecks and rates of change in light intensity at the beginning and end of sustained light (SL) events makes photosynthetic measurements difficult, especially when dealing with less accessible parts of plant foliage. High time resolved photosynthetic monitoring from pulse amplitude modulated (PAM) fluorometers has limited applicability due to the invasive nature of frequently applied saturating flashes.
View Article and Find Full Text PDFThe prototype light-induced fluorescence transient (LIFT) instrument provides continuous, minimally intrusive, high time resolution (~2s) assessment of photosynthetic performance in terrestrial plants from up to 2m. It induces a chlorophyll fluorescence transient by a series of short flashes in a saturation sequence (180 ~1μs flashlets in <380μs) to achieve near-full reduction of the primary acceptor QA, followed by a relaxation sequence (RQA; 90 flashlets at exponentially increasing intervals over ~30ms) to observe kinetics of QA re-oxidation. When fitted by the fast repetition rate (FRR) model (Kolber et al.
View Article and Find Full Text PDFRev Sci Instrum
February 2016
Resonant Ionization Laser Ion Source (RILIS) is nowadays an important technique in many Radioactive Ion Beam (RIB) facilities for its reliability and ability to ionize efficiently and element selectively. Grand Accélérateur National d'Ions Lourds (GANIL) Ion Source using Electron Laser Excitation (GISELE) is an off-line test bench for RILIS developed to study a fully operational resonant laser ion source at GANIL facility. The ion source body has been designed as a modular system to investigate different experimental approaches by varying the design parameters, to develop the future on-line laser ion source.
View Article and Find Full Text PDFIn the framework of the SPIRAL1 upgrade under progress at the GANIL lab, the charge breeder based on a LPSC Phoenix ECRIS, first tested at ISOLDE has been modified to benefit of the last enhancements of this device from the 1+/n+ community. The modifications mainly concern the 1 + optics, vacuum techniques, and the RF-buffer gas injection into the charge breeder. Prior to its installation in the midst of the low energy beam line of the SPIRAL1 facility, it has been decided to qualify its performances and several operation modes at the test bench of LPSC lab.
View Article and Find Full Text PDFThe SPIRAL2 injector, installed in its tunnel, is currently under commissioning at GANIL, Caen, France. The injector is composed of two low energy beam transport lines: one is dedicated to the light ion beam production, the other to the heavy ions. The first light ion beam, created by a 2.
View Article and Find Full Text PDFAbstract Engaging in research and using evidence based practice are essential for mental health nurses to provide quality nursing care to consumers and families. This paper reports on a Delphi study that identified the top 10 mental health nursing research priorities at one area health service in Australia servicing a population of 840,000 people. Initially 390 research questions were identified by nurses and these were then reduced to 56 broader questions.
View Article and Find Full Text PDFThis is a tale of a career in plant physiological ecology that enjoyed the freedom to address photosynthetic physiology and biochemistry in leaves of plants from diverse environments. It was supported by block funding (now sadly a thing of the past) for research at the Australian National University, by grants during appointments in the United States and in Germany, and by Columbia University. It became a "career experiment" in which long-term, high-trust support for curiosity-driven plant biology in Australia, and at times in the United States, led to surprisingly innovative results.
View Article and Find Full Text PDFRev Sci Instrum
February 2014
SPIRAL2 (Système de Production d'Ions Radioactifs Accélérés en Ligne) is a research facility under construction at GANIL (Grand Accélérateur National d'Ions Lourds) for the production of radioactive ion beams by isotope separation on-line methods and low-energy in-flight techniques. A resonant ionization laser ion source will be one of the main techniques to produce the radioactive ion beams. GISELE (GANIL Ion Source using Electron Laser Excitation) is a test bench developed to study a fully operational laser ion source available for Day 1 operations at SPIRAL2 Phase 2.
View Article and Find Full Text PDFThe SPIRAL 2 facility, currently under construction, will provide either stable or radioactive beams at high intensity. In addition to the high intensity of stable beams, high charge states must be produced by the ion source to fulfill the RFQ LINAC injection requirements: Q/A = 1/3 at 60 kV ion source extraction voltage. Excepting deuterons and hydrogen, most of the stable beam requests concern metallic elements.
View Article and Find Full Text PDFAbstract Engaging in research and using evidence based practice are essential for mental health nurses to provide quality nursing care to consumers and families. This paper reports on a Delphi study that identified the top ten mental health nursing research priorities at one area health service in Australia servicing a population of 840,000 people. Initially 390 research questions were identified by nurses and these were then reduced to 56 broader questions.
View Article and Find Full Text PDFLong-lived shade leaves of avocado had extremely low rates of photosynthesis. Gas exchange measurements of photosynthesis were of limited use, so we resorted to Chl fluorescence imaging (CFI) and spot measurements to evaluate photosynthetic electron transport rates (ETRs) and non-photochemical quenching (NPQ). Imaging revealed a remarkable transient heterogeneity of NPQ during photosynthetic induction in these hypostomatous, heterobaric leaves, but was adequately integrated by spot measurements, despite long-lasting artifacts from repeated saturating flashes during assays.
View Article and Find Full Text PDFHalf a century of research into the physiology and biochemistry of sun-shade acclimation in diverse plants has provided reality checks for contemporary understanding of thylakoid membrane dynamics. This paper reviews recent insights into photosynthetic efficiency and photoprotection from studies of two xanthophyll cycles in old shade leaves from the inner canopy of the tropical trees Inga sapindoides and Persea americana (avocado). It then presents new physiological data from avocado on the time frames of the slow coordinated photosynthetic development of sink leaves in sunlight and on the slow renovation of photosynthetic properties in old leaves during sun to shade and shade to sun acclimation.
View Article and Find Full Text PDFRev Sci Instrum
February 2012
The SPIRAL 2 facility is now under construction and will deliver either stable or radioactive ion beams. First tests of nickel beam production have been performed at GANIL with a new version of the large capacity oven, and a calcium beam has been produced on the heavy ion low energy beam transport line of SPIRAL 2, installed at LPSC Grenoble. For the production of radioactive beams, several target∕ion-source systems (TISSs) are under development at GANIL as the 2.
View Article and Find Full Text PDFRecognising that plant leaves are the fundamental productive units of terrestrial vegetation and the complexity of different environments in which they must function, this review considers a few of the ways in which these functions may be measured and potentially scaled to the canopy. Although canopy photosynthetic productivity is clearly the sum of all leaves in the canopy, we focus on the quest for 'economical insights' from measurements that might facilitate integration of leaf photosynthetic activities into canopy performance, to better inform modelling based on the 'insights of economics'. It is focussed on the reversible downregulation of photosynthetic efficiency in response to light environment and stress and summarises various xanthophyll-independent and dependent forms of photoprotection within the inner and outer canopy of woody plants.
View Article and Find Full Text PDFHaving gained some understanding of the consequences of the CO(2)-concentrating mechanisms in crassulacean acid metabolism (CAM) that internalize the photosynthetic environment of the Cretaceous on a daily basis, it may be time to consider potential long-term effects of the planetary CO(2)-concentrating mechanism on growth and ecology of these plants in the Anthropocene. This paper emphasizes our limited understanding of the carbohydrate economy of CAM in relation to growth processes and briefly reviews recent studies of the diel cycles of growth in these plants. An inadvertent long-term, regional-scale experiment from the past is revisited in which an Opuntia monoculture grew to occupy >25 million hectares of farmland in central eastern Australia, producing a total biomass of about 1.
View Article and Find Full Text PDFShort- and long-term responses of the violaxanthin (V) and lutein epoxide (Lx) cycles were studied in two species of Lauraceae: sweet bay laurel (Laurus nobilis L.) and avocado (Persea americana L.).
View Article and Find Full Text PDFThis study reports evidence that the timing of leaf growth responds to developmental and environmental constraints in Clusia spp. We monitored diel patterns of leaf growth in the facultative C(3)-crassulacean acid metabolism (CAM) species Clusia minor and in the supposedly obligate CAM species Clusia alata using imaging methods and followed diel patterns of CO2 exchange and acidification. Developing leaves of well-watered C.
View Article and Find Full Text PDF