Publications by authors named "Osmo Antikainen"

Changing relative humidity levels challenge the manufacturing of chewable xylitol-sorbitol based tablets. The aim of the study is to investigate how the formulation of chewable xylitol-sorbitol tablets affects the properties of the powder blends and the tablets in an environment of different relative humidity levels. In all, 30 batches containing different ratios of sorbitol, xylitol and magnesium stearate were prepared at three different relative humidity levels.

View Article and Find Full Text PDF

The effect of colloidal silicon dioxide (CSD) on powder flow properties of poor-flowing excipient lactose 200 M was investigated. Binary mixtures of different ratios of CSD as glidant were examined using a modern image-based flow measuring technique. Special attention was placed to subtle variations in powder flow from small changes in glidant concentration (0.

View Article and Find Full Text PDF

Powder flowability plays an important role in die filling during tablet manufacturing. The present study introduces a novel small-scale measuring technique for powder flow. Based on image analysis, the flow was defined depending on the variation of luminous intensity and the movement of powder inside the measurement cuvette.

View Article and Find Full Text PDF

In the present study, a model was developed to estimate tablet tensile strength utilizing the gravitation-based high-velocity (G-HVC) method introduced earlier. Three different formulations consisting of microcrystalline cellulose (MCC), dicalcium phosphate dihydrate (DCP), hydroxypropyl methylcellulose (HPMC), theophylline and magnesium stearate were prepared. The formulations were granulated using fluid bed granulation and the granules were compacted with the G-HVC method and an eccentric tableting machine.

View Article and Find Full Text PDF

Solid dispersions (SDs) hold a proven potential in formulating poorly water-soluble drugs. The present paper investigates the interfacial phenomena associated with the bulk powder flow, water sorption, wetting and dissolution of the SDs prepared by a modified melt and quench-cooling (QC) method. Poorly water-soluble indomethacin (IND) was QC molten with solubilizing graft copolymer (Soluplus®) or polyol sugar alcohol (xylitol, XYL).

View Article and Find Full Text PDF

The compression physics of powders must be considered when developing a suitable tablet formulation. In the present study, the gravitation-based high-velocity method was utilized to analyze mechanical properties of eight common pharmaceutical excipients: two grades of lactose, anhydrous glucose, anhydrous calcium hydrogen phosphate, three grades of microcrystalline cellulose and starch. Samples were compressed five times consecutively with varying pressure and speed so that Setup A produced higher pressure and longer contact time than Setup B.

View Article and Find Full Text PDF

Two nonlinear imaging modalities, coherent anti-Stokes Raman scattering (CARS) and sum-frequency generation (SFG), were successfully combined for sensitive multimodal imaging of multiple solid-state forms and their changes on drug tablet surfaces. Two imaging approaches were used and compared: (i) hyperspectral CARS combined with principal component analysis (PCA) and SFG imaging and (ii) simultaneous narrowband CARS and SFG imaging. Three different solid-state forms of indomethacin-the crystalline gamma and alpha forms, as well as the amorphous form-were clearly distinguished using both approaches.

View Article and Find Full Text PDF

A new dry granulation technique, gas-assisted roller compaction (GARC), was compared with conventional roller compaction (CRC) by manufacturing 34 granulation batches. The process variables studied were roll pressure, roll speed, and sieve size of the conical mill. The main quality attributes measured were granule size and flow characteristics.

View Article and Find Full Text PDF

With modern tableting machines large amounts of tablets are produced with high output. Consequently, methods to examine powder compression in a high-velocity setting are in demand. In the present study, a novel gravitation-based method was developed to examine powder compression.

View Article and Find Full Text PDF

Amorphous solid dispersions (SDs) are a promising approach to improve the dissolution rate of and oral bioavailability of poorly water-soluble drugs. In some cases multi-phase, instead of single-phase, SD systems with amorphous drug are obtained. While it is widely assumed that one-phase amorphous systems are desirable, two-phase systems may still potentially exhibit enhanced stability and dissolution advantages over undispersed systems.

View Article and Find Full Text PDF

Inhaler errors are common amongst inhaler users. Therefore, in the development work of new inhalation devices, it is important to characterize the ease of use of the inhalers. In this study four dry powder inhalers, Diskus, Easyhaler, Ellipta and Turbuhaler, were evaluated, focusing on ease of use and patient preference.

View Article and Find Full Text PDF

Intrinsic dissolution rate (IDR) has traditionally been determined from a constant surface area of a substance. Here we present an optofluidic single-particle intrinsic dissolution rate (SIDR) method, by means of which real-time determination of IDR from continuously changing effective surface areas of dissolving individual microparticles, is possible. The changing surface area of the individual microparticles is characterized through continuous random orientation 3D particle morphology characterization during the dissolution process.

View Article and Find Full Text PDF

In the present study the mechanical properties of microcrystalline cellulose compacts compressed were studied. The resistance to crushing was tested using diametral compression testing and apparent Young's modulus was determined using consecutive uniaxial compression of the full cross-sectional area of single tablets. As non-elastic deformation during the first compression cycle and reverse plasticity were discovered, the loading phase of the second compression cycle was used to determine Young's modulus.

View Article and Find Full Text PDF

Solubility is the primary physicochemical property determining the absorption and bioavailability of substances. Here, we present an optofluidic single-particle technique for microscale equilibrium solubility determination, based on on-chip hydrodynamic particle trapping and optical particle size monitoring. The method combines the rapidity, universality, and substance sparing nature of physical analysis, with the accuracy traditionally associated with chemical analysis.

View Article and Find Full Text PDF

Nanocrystallization is among the foremost drug delivery platform approaches for the commercial development of poorly soluble drugs. There exists an urge to enable a universal shift of the production of the solid nanocrystal formulations from laboratory scale to industrially feasible scale. The success of any formulation development depends on its transferability to large scale manufacture.

View Article and Find Full Text PDF

This paper introduces and discusses a photometric surface imaging approach for on-line monitoring of fluid bed granulation. Five granule batches consisting of paracetamol and varying amounts of lactose and microcrystalline cellulose were manufactured with an instrumented fluid bed granulator. Photometric images and NIR spectra were continuously captured on-line and particle size information was extracted from them.

View Article and Find Full Text PDF

In this paper, linkages between tablet surface roughness, tablet compression forces, material properties, and the tensile strength of tablets were studied. Pure sodium halides (NaF, NaBr, NaCl, and NaI) were chosen as model substances because of their simple and similar structure. Based on the data available in the literature and our own measurements, various models were made to predict the tensile strength of the tablets.

View Article and Find Full Text PDF

Tablet compression of softwood cellulose and lignin prepared by a new catalytic oxidation and acid precipitation method were investigated and compared with the established pharmaceutical direct compression excipients. Catalytic pretreated softwood cellulose (CPSC) and lignin (CPSL) were isolated from pine wood (Pinus sylvestris). The compaction studies were carried out with an instrumented eccentric tablet machine.

View Article and Find Full Text PDF

To date, little is known on applicability of different types of pharmaceutical dosage forms in an automated high-speed multi-dose dispensing process. The purpose of the present study was to identify and further investigate various process-induced and/or product-related limitations associated with multi-dose dispensing process. The rates of product defects and dose dispensing errors in automated multi-dose dispensing were retrospectively investigated during a 6-months follow-up period.

View Article and Find Full Text PDF

The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process.

View Article and Find Full Text PDF

This study presents a new approach to model powder compression during tableting. The purpose of this study is to introduce a new discrete element simulation model for particle-particle bond formation during tablet compression. This model served as the basis for calculating tablet strength distribution during a compression cycle.

View Article and Find Full Text PDF

The present study introduces a new three-dimensional (3D) surface image analysis technique in which white light illumination from different incident angles is used to create 3D surfaces with a photometric approach. The three-dimensional features of the surface images created are then used in the characterization of particle size distributions of granules. This surface image analysis method is compared to sieve analysis and a particle sizing method based on spatial filtering technique with nearly 30 granule batches.

View Article and Find Full Text PDF

An ultrasound-assisted powder-coating technique was used to produce a homogeneous powder formulation of a low-dose active pharmaceutical ingredient (API). The powdered particles of microcrystalline cellulose (MCC; Avicel® PH-200) were coated with a 4% m/V aqueous solution of riboflavin sodium phosphate, producing a uniform drug layer on the particle surfaces. It was possible to regulate the amount of API in the treated powder.

View Article and Find Full Text PDF

The aim of this study was to investigate early formulation screening in small scale with a miniaturized fluid bed device. Altogether eight different batches were granulated in a Multipart Microscale Fluid bed Powder processor (MMFP) with constant process conditions using electrostatic atomization. Atomization voltage and granulation liquid flow rate were kept constant.

View Article and Find Full Text PDF

A "simplex-centroid mixture design" was used to study the direct-compression properties of binary and ternary mixtures of chitin and two cellulosic direct-compression diluents. Native milled and fractioned (125-250 microm) crustacean chitin of lobster origin was blended with microcrystalline cellulose, MCC (Avicel PH 102) and spray-dried lactose-cellulose, SDLC Cellactose (composed of a spray-dried mixture of alpha-lactose monohydrate 75% and cellulose powder 25%). An instrumented single-punch tablet machine was used for tablet compactions.

View Article and Find Full Text PDF