In this article, motivated by novel nanofluid solar energy coating systems, a mathematical model of hybrid magnesium oxide (MgO) and nickel (Ni) nanofluid magnetohydrodynamic (MHD) stagnation point flow impinging on a porous elastic stretching surface in a porous medium is developed. The hybrid nanofluid is electrically conducted, and a magnetic Reynolds number is sufficiently large enough to invoke an induced magnetic field. A Darcy model is adopted for the isotropic, homogenous porous medium.
View Article and Find Full Text PDFTwo-dimensional laminar hemodynamics through a diseased artery featuring an overlapped stenosis was simulated theoretically and computationally. This study presented a mathematical model for the unsteady blood flow with hybrid biocompatible nanoparticles (Silver and Gold) inspired by drug delivery applications. A modified Tiwari-Das volume fraction model was adopted for nanoscale effects.
View Article and Find Full Text PDFProc Inst Mech Eng H
January 2014
This article studies theoretically the transportation of rheological viscoplastic fluids through physiological vessels by continuous muscle contraction and relaxation, that is, peristalsis. Both cases of planar and cylindrical physiological vessels are considered. A mathematical model is developed under long wavelength and low Reynolds number approximations.
View Article and Find Full Text PDFA numerical study is performed to investigate the magnetohydrodynamic viscous steady biofluid flow through a curved pipe with circular cross section under various conditions. A spectral method is applied as the principal tool for the numerical simulation with Fourier series, Chebyshev polynomials, collocation methods and an iteration method as secondary tools. The combined effects of Dean number, Dn , magnetic parameter, Mg , and tube curvature, δ, are studied.
View Article and Find Full Text PDF