Publications by authors named "Oskari Uski"

The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro.

View Article and Find Full Text PDF

In urban areas, inhalation of fine particles from combustion sources such as diesel engines causes adverse health effects. For toxicity testing, a substantial amount of particulate matter (PM) is needed. Conventional sampling involves collection of PM onto substrates by filtration or inertial impaction.

View Article and Find Full Text PDF

Background: Exposure to wood smoke has been shown to contribute to adverse respiratory health effects including airway infections, but the underlying mechanisms are unclear. A preceding study failed to confirm any acute inflammation or cell influx in bronchial wash (BW) or bronchoalveolar lavage (BAL) 24 h after wood smoke exposure but showed unexpected reductions in leukocyte numbers. The present study was performed to investigate responses at an earlier phase, regarding potential development of acute inflammation, as well as indications of cytotoxicity.

View Article and Find Full Text PDF

Background: Wood combustion emissions have been studied previously either by in vitro or in vivo models using collected particles, yet most studies have neglected gaseous compounds. Furthermore, a more accurate and holistic view of the toxicity of aerosols can be gained with parallel in vitro and in vivo studies using direct exposure methods. Moreover, modern exposure techniques such as air-liquid interface (ALI) exposures enable better assessment of the toxicity of the applied aerosols than, for example, the previous state-of-the-art submerged cell exposure techniques.

View Article and Find Full Text PDF

The use of electronic cigarettes (E-cigs) is rapidly increasing. The latest generation of E-cigs is highly customizable, allowing for high heating coil temperatures. The aim of this study was to assess the toxic potential of a fourth-generation E-cig.

View Article and Find Full Text PDF

There is currently great interest in replacing fossil-oil with renewable fuels in energy production. Fast pyrolysis bio-oil (FPBO) made of lignocellulosic biomass is one such alternative to replace fossil oil, such as heavy fuel oil (HFO), in energy boilers. However, it is not known how this fuel change will alter the quantity and quality of emissions affecting human health.

View Article and Find Full Text PDF

Porous silicon (PSi) has attracted wide interest as a potential material for various fields of nanomedicine. However, until now, the application of PSi in photothermal therapy has not been successful due to its low photothermal conversion efficiency. In the present study, biodegradable black PSi (BPSi) nanoparticles were designed and prepared via a high-yield and simple reaction.

View Article and Find Full Text PDF

Toxicological characterisation of combustion emissions in vitro are often conducted with macrophage cell lines, and the majority of these experiments are based on responses measured at 24h after the exposure. The aim of this study was to investigate how significant role time course plays on toxicological endpoints that are commonly measured in vitro. The RAW264.

View Article and Find Full Text PDF

Nanomaterials (NM) exhibit novel physicochemical properties that determine their interaction with biological substrates and processes. Recent nano-technological advances are leading to wide usage of metallic nanoparticles (NPs) in various fields. However, the increasing use of NPs has led to their release into environment and the toxicity of NPs on human health has become a concern.

View Article and Find Full Text PDF

According to the World Health Organization particulate emissions from the combustion of solid fuels caused more than 110,000 premature deaths worldwide in 2010. Log wood combustion is the most prevalent form of residential biomass heating in developed countries, but it is unknown how the type of wood logs used in furnaces influences the chemical composition of the particulate emissions and their toxicological potential. We burned logs of birch, beech and spruce, which are used commonly as firewood in Central and Northern Europe in a modern masonry heater, and compared them to the particulate emissions from an automated pellet boiler fired with softwood pellets.

View Article and Find Full Text PDF

Background: Smoke from combustion of biomass fuels is a major risk factor for respiratory disease, but the underlying mechanisms are poorly understood. The aim of this study was to determine whether exposure to wood smoke from incomplete combustion would elicit airway inflammation in humans.

Methods: Fourteen healthy subjects underwent controlled exposures on two separate occasions to filtered air and wood smoke from incomplete combustion with PM1 concentration at 314 μg/m(3) for 3 h in a chamber.

View Article and Find Full Text PDF

Multiple studies show that particulate mass (PM) generated from incomplete wood combustion may induce adverse health issues in humans. Previous findings have shown that also the PM from efficient wood combustion may induce enhanced production of reactive oxygen species (ROS), inflammation, and cytotoxicity in vitro and in vivo. Underlying factors of these effects may be traced back to volatile inorganic transition metals, especially zinc, which can be enriched in the ultrafine fraction of biomass combustion particulate emission.

View Article and Find Full Text PDF

Inflammation is regarded as an important mechanism behind mortality and morbidity experienced by cardiorespiratory patients exposed to urban air particulate matter (PM). Small-scale biomass combustion is an important source of particulate air pollution. In this study, we investigated association between inflammatory responses and chemical composition of PM(1) emissions from seven different small-scale wood combustion appliances representing old and modern technologies.

View Article and Find Full Text PDF

Current levels of ambient air fine particulate matter (PM(2.5)) are associated with mortality and morbidity in urban populations worldwide. In residential areas wood combustion is one of the main sources of PM(2.

View Article and Find Full Text PDF

Background: Peroxisome proliferator-activated receptors (PPARs) are known for their critical role in the development of diseases, such as obesity, cardiovascular disease, type 2 diabetes and cancer. Here, an in silico screening method is presented, which incorporates experiment- and informatics-derived evidence, such as DNA-binding data of PPAR subtypes to a panel of PPAR response elements (PPREs), PPRE location relative to the transcription start site (TSS) and PPRE conservation across multiple species, for more reliable prediction of PPREs.

Results: In vitro binding and in vivo functionality evidence agrees with in silico predictions, validating the approach.

View Article and Find Full Text PDF