Publications by authors named "Oskar Thor Johannsson"

Background: Fusion genes result from genomic structural changes, which can lead to alterations in gene expression that supports tumor development. The aim of the study was to use fusion genes as a tool to identify new breast cancer (BC) genes with a role in BC progression.

Methods: Fusion genes from breast tumors and BC cell lines were collected from publications.

View Article and Find Full Text PDF

Amplification of 8p12-p11 is relatively common in breast cancer and several genes within the region have been suggested to affect breast tumor progression. The aim of the study was to map the amplified 8p12-p11 region in a large set of breast tumors in an effort to identify the genetic driver and to explore its impact on tumor progression and prognosis. Copy number alterations (CNAs) were mapped in 359 tumors, and gene expression data from 577 tumors (359 tumors included) were correlated with CNA, clinical-pathological factors, and protein expression (39 tumors).

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) occurs in approximately 15% of all breast cancer patients, and the incidence of TNBC is greatly increased in BRCA1 mutation carriers. This study aimed to assess the impact of BRCA1 promoter methylation with respect to breast cancer subtypes in sporadic disease. Tissue microarrays (TMAs) were constructed representing tumors from 303 patients previously screened for BRCA1 germline mutations, of which a subset of 111 sporadic tumors had previously been analyzed with respect to BRCA1 methylation.

View Article and Find Full Text PDF

Introduction: Proteins encoded by Fanconi anemia (FA) and/or breast cancer (BrCa) susceptibility genes cooperate in a common DNA damage repair signaling pathway. To gain deeper insight into this pathway and its influence on cancer risk, we searched for novel components through protein physical interaction screens.

Methods: Protein physical interactions were screened using the yeast two-hybrid system.

View Article and Find Full Text PDF

Introduction: Germline mutations in the BRCA1 and BRCA2 genes account for a considerable fraction of familial predisposition to breast cancer. Somatic mutations in BRCA1 and BRCA2 have not been found and the involvement of these genes in sporadic tumour development therefore remains unclear.

Methods: The study group consisted of 67 primary breast tumours with and without BRCA1 or BRCA2 abnormalities.

View Article and Find Full Text PDF

Germ line mutations in BRCA1 and BRCA2 account for a large proportion of inherited breast and ovarian cancer. Both genes are involved in DNA repair by homologous recombination and are thought to play a vital role in maintaining genomic stability. A major drawback for long-term functional studies of BRCA in general and BRCA2 in particular has been a lack of representative human breast epithelial cell lines.

View Article and Find Full Text PDF