By introducing new-to-nature transformations, artificial metalloenzymes hold great potential for expanding the biosynthetic toolbox. The chemistry of an active cofactor in these enzymes is highly dependent on how the holoprotein is assembled, potentially limiting the choice of organometallic complexes amenable to incorporation and ability of the protein structure to influence the metal centre. We have previously reported a method utilising ligand exchange as a means to introduce ruthenium-arene fragments into a four-helix bundle protein.
View Article and Find Full Text PDFTo survive, many pathogens extract heme from their host organism and break down the porphyrin scaffold to sequester the Fe ion a heme oxygenase. Recent studies have revealed that certain pathogens can anaerobically degrade heme. Our own research has shown that one such pathway proceeds NADH-dependent heme degradation, which has been identified in a family of hemoproteins from a range of bacteria.
View Article and Find Full Text PDFFinding new mechanistic solutions for biocatalytic challenges is key in the evolutionary adaptation of enzymes, as well as in devising new catalysts. The recent release of man-made substances into the environment provides a dynamic testing ground for observing biocatalytic innovation at play. Phosphate triesters, used as pesticides, have only recently been introduced into the environment, where they have no natural counterpart.
View Article and Find Full Text PDFMany natural metalloenzymes assemble from proteins and biosynthesised complexes, generating potent catalysts by changing metal coordination. Here we adopt the same strategy to generate artificial metalloenzymes (ArMs) using ligand exchange to unmask catalytic activity. By systematically testing Ru (η -arene)(bipyridine) complexes designed to facilitate the displacement of functionalised bipyridines, we develop a fast and robust procedure for generating new enzymes via ligand exchange in a protein that has not evolved to bind such a complex.
View Article and Find Full Text PDF