Publications by authors named "Osiris German Idelfonso-Garcia"

The worst-case scenario related to alcoholic liver disease (ALD) arises after a long period of exposure to the harmful effect of alcohol consumption along with other hepatotoxics. ALD encompasses a broad spectrum of liver-associated disorders, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Based on the chronic administration of different hepatotoxics, including ethanol, sucrose, lipopolysaccharide, and low doses of diethylnitrosamine over a short period, here we aimed to develop a multiple hepatotoxic (MHT)-ALD model in the mouse that recapitulates the human ALD-associated disorders.

View Article and Find Full Text PDF

Double labeling to identify different markers in the same tissue section represents a useful tool either for in situ diagnosis or characterization of molecular associations. Here, we present a protocol to detect senescence-associated β-galactosidase (SA-βGal) and immunoperoxidase (IPO) activity in fresh-frozen murine tissues. We describe steps for tissue collection, solution preparation, SA-βGal staining, IPO staining, hematoxylin counterstaining, microscopic observation, and signal quantification.

View Article and Find Full Text PDF

Aging is characterized by increased reactive species, leading to redox imbalance, oxidative damage, and senescence. The adverse effects of alcohol consumption potentiate aging-associated alterations, promoting several diseases, including liver diseases. Nucleoredoxin (NXN) is a redox-sensitive enzyme that targets reactive oxygen species and regulates key cellular processes through redox protein-protein interactions.

View Article and Find Full Text PDF

Following an Assessment by the Autonomous University of Hidalgo State and the National Institute of Genomic Medicine, this erratum corrects the authorship of this article by adding Dulce María MORENO-GARCÍA as the first author.

View Article and Find Full Text PDF

Nucleoredoxin (NXN), an oxidoreductase enzyme, contributes to cellular redox homeostasis by regulating different signaling pathways in a redox-dependent manner. By interacting with seven proteins so far, namely disheveled (DVL), protein phosphatase 2A (PP2A), phosphofructokinase-1 (PFK1), translocation protein SEC63 homolog (SEC63), myeloid differentiation primary response gene-88 (MYD88), flightless-I (FLII), and calcium/calmodulin-dependent protein kinase II type alpha (CAMK2A), NXN is involved in the regulation of several key cellular processes, including proliferation, organogenesis, cell cycle progression, glycolysis, innate immunity and inflammation, motility, contraction, protein transport into the endoplasmic reticulum, neuronal plasticity, among others; as a result, NXN has been implicated in different pathologies, such as cancer, alcoholic and polycystic liver disease, liver fibrogenesis, obesity, Robinow syndrome, diabetes mellitus, Alzheimer's disease, and retinitis pigmentosa. Together, this evidence places NXN as a strong candidate to be a master redox regulator of cell physiology and as the hub of different redox-sensitive signaling pathways and associated pathologies.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC), which is the most frequent primary liver malignancy, is ranked as the sixth most common cancer and the third leading cause of cancer-related deaths worldwide, with its incidence expected to continue rising. One of the reasons is that most patients are diagnosed at an advanced stage when therapeutic options are ineffective. The development of HCC is attributed to a chronic exposition to either one or a combination of low amounts of different hepatotoxins, such as in hepatitis virus infection, alcohol consumption, aflatoxin from contaminated foods, metabolic factors, and exposure to chemical carcinogens from tobacco smoke (Forner et al.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) arises after a long period of exposition to etiological factors that might be either independent or collectively contributing. Several rodent models resemble human HCC; however, the major limitation of these models is the lack of chronic injury that reproducibly mimics the molecular alterations as it occurs in humans. Thus, we hypothesized that chronic administration of different DEN treatments identifies the best-fit dose to induce the HCC and/or to determine whether small DEN doses act synergistically with other known hepatotoxins to induce HCC in mice.

View Article and Find Full Text PDF