Publications by authors named "Osellame R"

The process of angiogenesis plays a pivotal role in skin regeneration, ensuring the provision of nutrients and oxygen to the nascent tissue, thanks to the formation of novel microvascular networks supporting functional tissue regeneration. Unfortunately, most of the current therapeutic approaches for skin regeneration lack vascularization, required to promote effective angiogenesis. Thus, tridimensional models, complemented with specific biochemical signals, can be a valuable tool to unravel the neovascularization mechanisms and develop novel clinical strategies.

View Article and Find Full Text PDF

Universal photonic processors (UPPs) are fully programmable photonic integrated circuits that are key components in quantum photonics. With this work, we present a novel platform for the realization of low-loss, low-power, and high-fidelity UPPs based on femtosecond laser writing (FLW) and compatible with a large wavelength spectrum. In fact, we demonstrate different UPPs, tailored for operation at 785 nm and 1550 nm, providing similar high-level performances.

View Article and Find Full Text PDF

Sodium hydroxide (NaOH) is increasingly drawing attention as a highly selective etchant for femtosecond laser-modified fused silica. Unprecedented etching contrasts between the irradiated and pristine areas have enabled the fabrication of hollow, high-aspect-ratio structures in the bulk of the material, overcoming the micrometer threshold as the minimum feature size. In this work, we systematically study the effect of NaOH solutions under different etching conditions (etchant concentration, temperature, and etching time) on the tracks created by tightly focused femtosecond laser pulses to assess the best practices for the fabrication of hollow nanostructures in bulk fused silica.

View Article and Find Full Text PDF

Inertial focusing-based Lab-on-Chip systems represent a promising technology for cell sorting in various applications, thanks to their alignment with the ASSURED criteria recommended by the World Health Organization: Affordable, Sensitive, Specific, User-friendly, Rapid and Robust, Equipment-free, and Delivered. Inertial focusing techniques using spiral microchannels offer a rapid, portable, and easy-to-prototype solution for cell sorting. Various microfluidic devices have been investigated in the literature to understand how hydrodynamic forces influence particle focusing in spiral microchannels.

View Article and Find Full Text PDF

We describe a beamline where few-femtosecond ultraviolet (UV) pulses are generated and synchronized to few-cycle near-infrared (NIR) and extreme ultraviolet (XUV) attosecond pulses. The UV light is obtained via third-harmonic generation in argon or neon gas when focusing a phase-stabilized NIR driving field inside a glass cell that was designed to support high pressures for enhanced conversion efficiency. A recirculation system allows reducing the large gas consumption required for the nonlinear process.

View Article and Find Full Text PDF

The extracellular environment plays a crucial role in many physiological and pathological processes involving cell motility, such as metastatic invasion in cancer development, by heavily impacting the migration strategies adopted by the cells. The study of how mechanical constraints affect the dynamics of cell migration may be relevant to gain more insight into such processes, and it may prove to be a powerful tool in the hands of biologists. In this chapter, we describe the methods used to investigate the ability of neoplastic cells to migrate through narrowing, rigid microstructures upon chemoattractant stimulation.

View Article and Find Full Text PDF

We present combined theoretical and experimental work investigating the angle-resolved phases of the photoionization process driven by a two-color field consisting of an attosecond pulse train and an infrared pulse in an ensemble of randomly oriented molecules. We derive a general form for the two-color photoelectron (and time-delay) angular distribution valid also in the case of chiral molecules and when relative polarizations of the photons contributing to the attosecond photoelectron interferometer differ. We show a comparison between the experimental data and theoretical predictions in an ensemble of methane and deuteromethane molecules, discussing the effect of nuclear dynamics on the photoionization phases.

View Article and Find Full Text PDF

Tissue histopathology, based on hematoxylin and eosin (H&E) staining of thin tissue slices, is the gold standard for the evaluation of the immune reaction to the implant of a biomaterial. It is based on lengthy and costly procedures that do not allow longitudinal studies. The use of non-linear excitation microscopy , largely label-free, has the potential to overcome these limitations.

View Article and Find Full Text PDF

Quantum superposition of high-dimensional states enables both computational speed-up and security in cryptographic protocols. However, the exponential complexity of tomographic processes makes certification of these properties a challenging task. In this work, we experimentally certify coherence witnesses tailored for quantum systems of increasing dimension using pairwise overlap measurements enabled by a six-mode universal photonic processor fabricated with a femtosecond laser writing technology.

View Article and Find Full Text PDF

We have built and characterized, to our knowledge, the first six-telescope discrete beam combiner (DBC) for stellar interferometry in the astronomical J-band. It is the DBC with the largest number of beam combinations and was manufactured using ultrafast laser inscription in borosilicate glass, with a throughput of ≈56. For calibration of the visibility-to-pixel matrix, we use a two-input Michelson interferometer and extract the complex visibility.

View Article and Find Full Text PDF

Heterogeneity investigation at the single-cell level reveals morphological and phenotypic characteristics in cell populations. In clinical research, heterogeneity has important implications in the correct detection and interpretation of prognostic markers and in the analysis of patient-derived material. Among single-cell analysis, imaging flow cytometry allows combining information retrieved by single cell images with the throughput of fluidic platforms.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found that special 3D structures called Nichoids help stem cells grow better and stay healthier.
  • The Nichoids change how forces are inside the cells, which affects how genes work.
  • This research could help doctors use stem cells more effectively in treatments for patients.
View Article and Find Full Text PDF
Article Synopsis
  • Mesenchymal stem cells (MSCs) are special cells that can help repair the body and also help control immune responses.
  • Researchers created a 3D structure called Nichoid, which helps MSCs stay stem-like without needing extra factors.
  • The study found that growing MSCs in the Nichoid changed the way many genes work, helping scientists understand how 3D shapes affect stem cell behavior and possibly their ability to move in the body.
View Article and Find Full Text PDF

Structured Illumination Microscopy (SIM) is a key technology for high resolution and super-resolution imaging of biological cells and molecules. The spread of portable and easy-to-align SIM systems requires the development of novel methods to generate a light pattern and to shift it across the field of view of the microscope. Here we show a miniaturized chip that incorporates optical waveguides, splitters, and phase shifters, to generate a 2D structured illumination pattern suitable for SIM microscopy.

View Article and Find Full Text PDF

We report the fabrication of alkali-metal vapor cells using femtosecond laser machining. This laser-written vapor-cell (LWVC) technology allows arbitrarily-shaped 3D interior volumes and has potential for integration with photonic structures and optical components. We use non-evaporable getters both to dispense rubidium and to absorb buffer gas.

View Article and Find Full Text PDF

Understanding cell migration is a key step in unraveling many physiological phenomena and predicting several pathologies, such as cancer metastasis. In particular, confinement has been proven to be a key factor in the cellular migration strategy choice. As our insight in the field improves, new tools are needed in order to empower biologists' analysis capabilities.

View Article and Find Full Text PDF

Single-cell imaging and sorting are critical technologies in biology and clinical applications. The power of these technologies is increased when combined with microfluidics, fluorescence markers, and machine learning. However, this quest faces several challenges.

View Article and Find Full Text PDF

Programmability in femtosecond-laser-written integrated circuits is commonly achieved with the implementation of thermal phase shifters. Recent work has shown how such phase shifters display significantly reduced power dissipation and thermal crosstalk with the implementation of thermal isolation structures. However, the aforementioned phase shifter technology is based on a single gold film, which poses severe limitations on integration density and circuit complexity due to intrinsic geometrical constraints.

View Article and Find Full Text PDF

The deployment of a full-fledged quantum internet poses the challenge of finding adequate building blocks for entanglement distribution between remote quantum nodes. A practical system would combine propagation in optical fibers with quantum memories for light, leveraging on the existing communication network while featuring the scalability required to extend to network sizes. Here, we demonstrate a fiber-integrated quantum memory entangled with a photon at telecommunication wavelength.

View Article and Find Full Text PDF

The human brain is the most complex organ in biology. This complexity is due to the number and the intricate connections of brain cells and has so far limited the development of in vitro models for basic and applied brain research. We decided to create a new, reliable, and cost-effective in vitro system based on the Nichoid, a 3D microscaffold microfabricated by two-photon laser polymerization technology.

View Article and Find Full Text PDF

We present an optimization of the dynamics of integrated optical switches based on thermal phase shifters. These devices have been fabricated in the volume of glass substrates by femtosecond laser micromachining and are constituted by an integrated Mach-Zehnder interferometer and a superficial heater. Simulations, surface micromachining and innovative layouts allowed us to improve the temporal response of the optical switches down to a few milliseconds.

View Article and Find Full Text PDF

In this Letter, we propose a fabrication technique based on femtosecond laser secondary direct writing (FsLSDW) that allows us to statically reset the beam-splitting ratio of directional couplers. By modifying the interaction region with a second inscription, the coupling coefficient of the reconstructed devices can be indeed changed continuously within the range of 0.49-2.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents initial results from a four-telescope integrated optics discrete beam combiner (DBC) tested at the William Herschel Telescope, designed to improve astronomical observations.
  • The DBC, created using ultrafast laser inscription on a single substrate, processes light from stars like Vega and Altair at the H-band (1.6 µm) while utilizing a deformable mirror for efficient light injection.
  • The results indicated that the measured visibility amplitudes and closure phases were affected by a significant dispersion from expected values, primarily due to a low signal-to-noise ratio, marking an initial step toward validating DBC for long-baseline interferometry.
View Article and Find Full Text PDF

The study of cellular migration dynamics and strategies plays a relevant role in the understanding of both physiological and pathological processes. An important example could be the link between cancer cell motility and tumor evolution into metastatic stage. These strategies can be strongly influenced by the extracellular environment and the consequent mechanical constrains.

View Article and Find Full Text PDF

Femtosecond laser micromachining (FLM) of fused silica allows for the realization of three-dimensional embedded optical elements and microchannels with micrometric feature size. The performances of these components are strongly affected by the machined surface quality and residual roughness. The polishing of 3D buried structures in glass was demonstrated using different thermal annealing processes, but precise control of the residual roughness obtained with this technique is still missing.

View Article and Find Full Text PDF