is a leading diarrheal cause of morbidity and mortality worldwide, especially in low- and middle-income countries and in children under five years of age. Increasing levels of antimicrobial resistance make vaccine development an even higher global health priority. serotype 6 is one of the targets of many multicomponent vaccines in development to ensure broad protection against .
View Article and Find Full Text PDFAnticancer Agents Med Chem
February 2013
The different steps of the topoisomerase I catalytic cycle have been analyzed in the presence of the plant alkaloid thaspine (1- (2-(Dimethylamino)ethyl)-3,8-dimethoxychromeno[5,4,3-cde]chromene-5,10-dione), known to induce apoptosis in colon carcinoma cells. The experiments indicate that thaspine inhibits both the cleavage and the religation steps of the enzyme reaction. The inhibition is reversible and the effect is enhanced upon pre-incubation.
View Article and Find Full Text PDFTopoisomerases I are ubiquitous enzymes that control DNA topology within the cell. They are the unique target of the antitumor drug camptothecin that selectively recognizes the DNA-topoisomerase covalent complex and reversibly stabilizes it. The biochemical and structural-dynamical properties of the Asp677Gly-Val703Ile double mutant with enhanced CPT sensitivity have been investigated.
View Article and Find Full Text PDFA gold(III) compound [Au(C^N^C)(IMe)]CF(3)SO(3) (Gold III) has been reported to have anticancer properties as it is able to reduce topoisomerase IB activity in vitro and suppress tumor growth in nude mice model. Here we have investigated the mechanism of inhibition of human topoisomerase IB activity by this compound, analyzing the various steps of the catalytic cycle. DNA supercoiled relaxation and the cleavage reaction are inhibited, but Gold III does not perturb the religation reaction, in contrast to what has been observed for camptothecin.
View Article and Find Full Text PDFThe N-terminal domain of human topoisomerase IB has been expressed, purified and characterized by spectroscopic techniques. CD spectra as a function of concentration and pH indicate that the domain does not possess any defined secondary structure. The protein is probably in a natively unfolded state since its denaturation curve is indicative of a non-cooperative transition.
View Article and Find Full Text PDFConjugated eicosapentaenoic acid (cEPA) has been found to have antitumor effects which has been ascribed to their ability to inhibit DNA topoisomerases and DNA polymerases. We here show that cEPA inhibits the catalytic activity of human topoisomerase I, but unlike camptothecin it does not stabilize the cleavable complex, indicating a different mechanism of action. cEPA inhibits topoisomerase by impeding the catalytic cleavage of the DNA substrate as demonstrated using specific oligonucleotide substrates, and prevents the stabilization of the cleavable complex by camptothecin.
View Article and Find Full Text PDFEukaryotic topoisomerase I is an essential enzyme that regulates the changes in DNA topology, relaxing the superhelical tension associated with DNA replication, transcription and recombination. Human topoisomerase I is of significant medical interest being the only target of the antitumor drug camptothecin. The enzyme undergoes large conformational changes during its catalytic cycle and the knowedge of the degree of flexibility of the different regions provides an useful guide to the understanding of such movements.
View Article and Find Full Text PDF