The Atmosphere-Space Interactions Monitor (ASIM) on the International Space Station (ISS) includes an instrument designed to geolocate Terrestrial Gamma-ray Flashes (TGF) produced by thunderstorms. It does so with a coded aperture system shadowing the pixelated Low Energy Detector of the Modular X- and Gamma-ray Sensor (MXGS). Additionally, it locates associated lightning flashes with the Modular Multispectral Imaging Array (MMIA).
View Article and Find Full Text PDFMesospheric Green emissions from excited Oxygen in Sprite Tops (ghosts) are infrequent and faint greenish transient luminous events that remain for hundreds of milliseconds on top of certain energetic sprites. The main hypothesis to explain this glow persistence is the long lifetime of excited atomic oxygen at 557.73 nm, a well-known emission line in aurora and airglow.
View Article and Find Full Text PDFOccasionally, lightning will exit the top of a thunderstorm and connect to the lower edge of space, forming a gigantic jet. Here, we report on observations of a negative gigantic jet that transferred an extraordinary amount of charge between the troposphere and ionosphere (∼300 C). It occurred in unusual circumstances, emerging from an area of weak convection.
View Article and Find Full Text PDFThere is an increasing interest to study the interactions between atmospheric electrical parameters and living organisms at multiple scales. So far, relatively few studies have been published that focus on possible biological effects of atmospheric electric and magnetic fields. To foster future work in this area of multidisciplinary research, here we present a glossary of relevant terms.
View Article and Find Full Text PDFIn 2002 it was discovered that a lightning discharge can rise out of the top of tropical thunderstorms and branch out spectacularly to the base of the ionosphere at 90 km altitude. Several dozens of such gigantic jets have been recorded or photographed since, but eluded capture by high-speed video cameras. Here we report on 4 gigantic jets recorded in Colombia at a temporal resolution of 200 µs to 1 ms.
View Article and Find Full Text PDFLightning flashes are known to initiate in regions of strong electric fields inside thunderstorms, between layers of positively and negatively charged precipitation particles. For that reason, lightning inception is typically hidden from sight of camera systems used in research. Other technology such as lightning mapping systems based on radio waves can typically detect only some aspects of the lightning initiation process and subsequent development of positive and negative leaders.
View Article and Find Full Text PDF