Colloids Surf B Biointerfaces
December 2024
Hydrogels (HGs) are 3-D polymeric networks with high water content, making them appropriate for biomedical applications such as drug delivery systems. This study examines the impact of agarose in semi-interpenetrating polymer networks (Semi-IPNs) based on poly(acrylic acid) (p(AA)), N, N' Methylenebis(acrylamide) (MBA) and agarose (AGA) on the sustained release of Polymyxin B (PolB). Agarose incorporation improved the mechanical strength, swelling behavior and drug retention capacity of the HG.
View Article and Find Full Text PDFThe integration of abscisic acid (ABA) into a chitosan-alginate gel blend unveils crucial insights into the formation and stability of these two substances. ABA, a key phytohormone in plant growth and stress responses, is strategically targeted for controlled release within these complexes. This study investigates the design and characterization of this novel controlled-release system, showcasing the potential of alginate-chitosan gel blends in ABA delivery.
View Article and Find Full Text PDFIn this work, chitosan films loaded with gallic acid and different content of chitin nanofibers were prepared and subjected to different characterization techniques. The results showed that the inclusion of gallic acid to chitosan films caused moderate decrease in water vapor permeability (by 29 %) and increased tensile strength of films (by 169 %) in comparison to the neat chitosan films. Furthermore, it was found that the addition of chitin nanofibers up to 30 % into chitosan/gallic acid films additionally improved tensile strength (by 474 %) and reduced plasticity of films (by 171 %), when compared to the chitosan/gallic acid films.
View Article and Find Full Text PDFAbscisic acid (ABA) has been proposed to play a significant role in the ripening of nonclimacteric fruit, stomatal opening, and response to abiotic stresses in plants, which can adversely affect crop growth and productivity. The biological effects of ABA are dependent on its concentration and signal transduction pathways. However, due to its susceptibility to the environment, it is essential to find a suitable biotechnological approach to coat ABA for its application.
View Article and Find Full Text PDFLipopeptides are medicinally essential building blocks with strong hemolytic, antifungal and antibiotic potential. In the present research article, we are presenting our findings regarding the synthesis of N-alkylated lipopeptides via Ugi four-component approach, their antimicrobial potential against pathogenic (Gram-positive and Gram-negative) bacteria, as well as computational studies to investigate the compounds binding affinity and dynamic behavior with MurD antibacterial target. Molecular docking demonstrated the compounds have good binding ability with MurD enzyme.
View Article and Find Full Text PDFIn this work, chitin, as a biobased polymer, is used as a precursor to obtain a phosphorylated derivatives. The influence of the different degree of phosphorylation in chitin on pyrolysis pattern was investigated. In order to understand the pyrolysis mechanism and the potential application of phosphorylated chitins, the samples were pyrolyzed at different temperatures and analyzed by FTIR, SEM, and Py-GC/MS analysis.
View Article and Find Full Text PDFIn light of the growing bacterial resistance to antibiotics and in the absence of the development of new antimicrobial agents, numerous antimicrobial delivery systems over the past decades have been developed with the aim to provide new alternatives to the antimicrobial treatment of infections. However, there are few studies that focus on the development of a rational design that is accurate based on a set of theoretical-computational methods that permit the prediction and the understanding of hydrogels regarding their interaction with cationic antimicrobial peptides (cAMPs) as potential sustained and localized delivery nanoplatforms of cAMP. To this aim, we employed docking and Molecular Dynamics simulations (MDs) that allowed us to propose a rational selection of hydrogel candidates based on the propensity to form intermolecular interactions with two types of cAMPs (MP-L and NCP-3a).
View Article and Find Full Text PDFThe present study shows porous activated carbon obtained from Chenopodium quinoa Willd and Quillaja saponaria and their use as potential adsorbents to remove three types of dyes from aqueous solutions. The adsorption results were compared with commercial charcoal to check their efficiency. All porous carbon materials were activated using carbon dioxide and steam and fully characterized.
View Article and Find Full Text PDFThis study investigated the biocomposite pectin films enriched with murta ( T.) seed polyphenolic extract and reinforced by chitin nanofiber. The structural, morphological, mechanical, barrier, colorimetric, and antioxidant activity of films were evaluated.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
December 2021
A rational design accurate based on the use of Statistical Design of the Experiments (DoE) and Molecular Dynamics Simulations Studies allows the prediction and the understanding of thermo-responsive hydrogels prepared regarding their gelation temperature and anti-cancer drug release rate. N-isopropylacrilamide (NIPAM) modified with specific co-monomers and crosslinkers, can be used to prepare "on-demand" thermo-responsive hydrogels with the ideal properties for clinical applications in which local sustained release of drugs is crucial. Two preferential formulations resulting from the predictive studies of DoE and In Silico methods were synthesized by radical polymerization, fully characterized, and loaded with the anticancer drug Doxorubicin (Dox).
View Article and Find Full Text PDFPesticides are used worldwide to increase crop yields in agriculture. However, their toxicity and accumulation capacity can make them toxic to the environment, animals and humans. In the case of workers chronically exposed to these substances, they must be sampled continuously, so urine is an excellent option.
View Article and Find Full Text PDFThe efficient use of waste from food processing industry is one of the innovative approaches within sustainable development, because it can be transferred into added value products, which could improve economic, energetic and environmental sectors. In this context, the squid pen waste from seafood industry was used as raw material to obtain nanofibrous β-chitin films. In order to extend functionality of obtained films, elderberry extract obtained from biomass was added at different concentrations.
View Article and Find Full Text PDFHydrogels obtained from combining different polymers are an interesting strategy for developing controlled release system platforms and tissue engineering scaffolds. In this study, the applicability of sodium alginate-g-(QCL-co-HEMA) hydrogels for these biomedical applications was evaluated. Hydrogels were synthesized by free-radical polymerization using a different concentration of the components.
View Article and Find Full Text PDFChloroplasts need to import preproteins and amino acids from the cytosol during their light-induced differentiation. Similarly, chloroplasts have to export organic matter including proteins and amino acids during leaf senescence. Members of the PRAT (preprotein and amino acid transporter) family are candidate transporters for both processes.
View Article and Find Full Text PDFβ-chitin was isolated from marine waste, giant Humboldt squid , and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of β-chitin. The SEM, TEM, and XRD characterization results verified that β-chitin crystalline structure were maintained after mechanical treatment.
View Article and Find Full Text PDFA series of hydrogels with a specific release profile of linezolid was successfully synthesized. The hydrogels were synthesized by cross-linking polyvinyl alcohol (PVA) and aliphatic dicarboxylic acids, which include succinic acid (SA), glutaric acid (GA), and adipic acid (AA). The three crosslinked hydrogels were prepared by esterification and characterized by equilibrium swelling ratio, infrared spectroscopy, thermogravimetric analysis, mechanical properties, and scanning electron microscopy.
View Article and Find Full Text PDFAntimicrobial resistance to conventional antibiotics and the limited alternatives to combat plant-threatening pathogens are worldwide problems. Antibiotic lipopeptides exert remarkable membrane activity, which usually is not prone to fast resistance formation, and often show organism-type selectivity. Additional modes of action commonly complement the bioactivity profiles of such compounds.
View Article and Find Full Text PDFWe investigated the potential of two oil extracts from seeds of (CIO) and (CO) to use as nutritionally edible oils. For this purpose, oil quality was accessed by determining the fatty acid composition, peroxide value, acid value, iodine value, saponification number, phenolic contents, and oxidative stability during thermally induced oxidation of CIO and CO oils and compared to those of extra-virgin olive oil (EVOO). The chemical composition results demonstrated that both oils could be nutritional sources of essential unsaturated fatty acids.
View Article and Find Full Text PDFThis research proposes the rational modeling, synthesis and evaluation of film dressing hydrogels based on polyvinyl alcohol crosslinked with 20 different kinds of dicarboxylic acids. These formulations would allow the sustained release of simultaneous bioactive compounds including allantoin, resveratrol, dexpanthenol and caffeic acid as a multi-target therapy in wound healing. Interaction energy calculations and molecular dynamics simulation studies allowed evaluating the intermolecular affinity of the above bioactive compounds by hydrogels crosslinked with the different dicarboxylic acids.
View Article and Find Full Text PDFThe multicomponent synthesis of prolyl pseudo-peptide catalysts using the Ugi reaction with furfurylamines or isocyanides is described. The incorporation of such a polymerizable furan handle enabled the subsequent polymerization of the peptide catalyst with furfuryl alcohol, thus rendering polyfurfuryl alcohol-supported catalysts for applications in heterogeneous enamine catalysis. The utilization of the polymer-supported catalysts in both batch and continuous-flow organocatalytic procedures proved moderate catalytic efficacy and enantioselectivity, but excellent diastereoselectivity in the asymmetric Michael addition of -butanal to β-nitrostyrene that was used as a model reaction.
View Article and Find Full Text PDFThe free-radical graft polymerization of acryloxyethyl-trimethylammonium chloride onto commercial silica particles was studied experimentally for extraction of arsenic ions from water. Two steps were used to graft acryloxyethyl-trimethylammonium chloride (Q) onto the surface of nanosilica: anchoring vinyltrimethoxysilane (VTMSO) onto the surface of silica to modify it with double bonds and then grafting Q onto the surface of silica with potassium persulfate as an initiator. The products were characterized by Fourier-transform infrared (FT-IR), the thermogravimetric analysis (TGA), scanning electron microscopy (SEM), C, Si nuclear magnetic resonance (NMR), and X-ray powder diffraction (XRD).
View Article and Find Full Text PDFIn this study, we investigated the potential of two non-edible oil extracts from seeds of (CIO) and (CSO) to use as a renewable source for polyols and, eventually, polyurethane foams or biodiesel. For this purpose, two novel polyols from the aforementioned oils were obtained in a one-single step reaction using a mixture of hydrogen peroxide and acetic acid. The polyol derivatives obtained from the two studied oils were characterized by spectral (FTIR, ¹H NMR, and C NMR), physicochemical (e.
View Article and Find Full Text PDFThe multicomponent backbone N-modification of peptides on solid-phase is presented as a powerful and general method to enable peptide stapling at the backbone instead of the side chains. This work shows that a variety of functionalized N-substituents suitable for backbone stapling can be readily introduced by means of on-resin Ugi multicomponent reactions conducted during solid-phase peptide synthesis. Diverse macrocyclization chemistries were implemented with such backbone N-substituents, including the ring-closing metathesis, lactamization, and thiol alkylation.
View Article and Find Full Text PDFMulticomponent reactions (MCRs) encompass an exciting class of chemical transformations that have proven success in almost all fields of synthetic organic chemistry. These convergent procedures incorporate three or more reactants into a final product in one pot, thus combining high levels of complexity and diversity generation with low synthetic cost. Striking applications of these processes are found in heterocycle, peptidomimetic, and natural product syntheses.
View Article and Find Full Text PDF