This paper introduces new contributions for construction procedures designed to enhance the robustness and precision of stress control in active anchorage and short presetressing units for long-span bridges, particularly addressing potential technical risks. The primary focus is on optimizing stress management for bridge stays, suspension cables, and short prestressing units by emphasizing a unified parameter: stress. The contributions of this research encompass (1) the introduction of advanced load cells for stress control in active anchorages and (2) the implementation of a novel synchronized multi-strain gage load cell network for short prestressing units, crucial in situations where prestressing losses can attain significant magnitudes.
View Article and Find Full Text PDFA correct modal analysis of girder bridge decks requires a correct characterisation of the deformation of their cross-section, governed by the longitudinal bending of the girders and the transverse bending of the slab. This paper presents a novel method that allows the modal analysis of girder bridge decks by applying a matrix formulation that reduces the structural problem to one degree of freedom for each girder: the deflection at the centre of the beam span. A parametric study is presented that analyses the structural response of 64 girder bridge decks.
View Article and Find Full Text PDF