This paper reports on the design and experimental validation of a fully-metallic double-ridged waveguide 10 × 10 Rotman lens additively manufactured as a single part. The wide band operation of this quasi-optical beamformer enables us to cover the uplink and downlink frequencies allocated to satellite communications in the K/Ka-band, from 17.3 GHz to 30 GHz.
View Article and Find Full Text PDFA double-layer lens consists of a first gradient-index/geodesic profile in an upper waveguide, partially surrounded by a mirror that reflects the wave into a lower guide where there is a second profile. Here, we derive a new family of rotational-symmetric inhomogeneous index profiles and equivalent geodesic lens shapes by solving an inverse problem of pre-specified focal points. We find an equivalence where single-layer lenses have a different functionality as double-layer lenses with the same profiles.
View Article and Find Full Text PDFThis paper presents the design and fabrication of a mechanically reconfigurable filter at W band based on the concept of glide symmetry. The tunability is achieved by breaking and regenerating the glide symmetry. The filters are made of two glide-symmetric pieces that can be displaced in a certain direction, and therefore, break the symmetry.
View Article and Find Full Text PDFThis work studies the propagation characteristics of a rectangular waveguide with aligned/misaligned double-sided dielectric-filled metallic corrugations. Two modes are found to propagate in the proposed double-sided configuration below the hollow-waveguide cutoff frequency: a quasi-resonant mode and a backward mode. This is in contrast to the single-sided configuration, which only allows for backward propagation.
View Article and Find Full Text PDFConformal transformation optics is employed to enhance an H-plane horn's directivity by designing a graded-index all-dielectric lens. The transformation is applied so that the phase error at the aperture is gradually eliminated inside the lens, leading to a low-profile high-gain lens antenna. The physical space shape is modified such that singular index values are avoided, and the optical path inside the lens is rescaled to eliminate superluminal regions.
View Article and Find Full Text PDFDielectric metasurfaces have opened promising possibilities to enable a versatile platform in the miniaturization of optical elements at visible and infrared frequencies. Due to high efficiency and compatibility with CMOS fabrication technology, silicon-based metasurfaces have a remarkable potential for a wide variety of optical devices. Adding tunability mechanisms to metasurfaces could be beneficial for their application in areas such as communications, imaging and sensing.
View Article and Find Full Text PDFNew high-frequency 5G and satellite communication systems require fully-metallic antennas and electromagnetic components. These components can be implemented with truncated versions of periodic structures. In order to achieve the desired performance of these future devices, it is of crucial importance to have a precise control of the propagation properties, i.
View Article and Find Full Text PDFIn this Letter, we explore the dispersion of spoof surface plasmons supported by a single-layer glide-symmetric structure. This structure consists of an infinitely long double-notched slot perforated in a metal layer. The presence of a degeneracy of the two lowest-order modes at the Brillouin zone boundary, which have non-zero group velocity is explained and experimentally demonstrated.
View Article and Find Full Text PDFThis Letter discusses nonresonant modes excited on holey metasurfaces and their influence on the properties of spoof plasmonic states supported by the metasurface when a second surface is placed in its proximity. We consider here a metallic surface with periodic holes drilled in it. The field excited on each hole is projected onto a set of nonresonant modes in order to discuss their relative relevance.
View Article and Find Full Text PDFTransformation optics with quasi-conformal mapping is applied to design a Generalized Maxwell Fish-eye Lens (GMFEL) which can be used as a power splitter. The flattened focal line obtained as a result of the transformation allows the lens to adapt to planar antenna feeding systems. Moreover, sub-unity refraction index regions are reduced because of the space compression effect of the transformation, reducing the negative impact of removing those regions when implementing the lens.
View Article and Find Full Text PDFIn the last decade, a technique termed transformation optics has been developed for the design of novel electromagnetic devices. This method defines the exact modification of magnetic and dielectric constants required, so that the electromagnetic behaviour remains invariant after a transformation to a new coordinate system. Despite the apparently infinite possibilities that this mathematical tool introduces, one restriction has repeatedly recurred since its conception: limited frequency bands of operation.
View Article and Find Full Text PDFTransformation electromagnetics has opened possibilities for designing antenna structures. Using an analytical approach, we demonstrate here how directive antenna radiation can be achieved from an omnidirectional source behind a diffuse surface. This diffuse surface has been obtained by an optical transformation of a Luneburg lens.
View Article and Find Full Text PDFA modified Luneburg lens based on Hamiltonian optical transformation with planar feeds is proposed in this Letter. The lens, made of conventional all-dielectric materials, does not have any kind of anisotropy. Therefore, in theory, its bandwidth of operation has no upper frequency limitations in contrast with recent designs utilizing metamaterials.
View Article and Find Full Text PDF