Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.
Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).
Purpose: To evaluate the amplitude of movement in anophthalmic sockets reconstructed with conical or spherical orbital implants with and without an external ocular prosthesis (EOP), and whether the fornix depth could play a role.
Methods: Prospective observational study involving unilateral anophthalmic sockets evaluated the amplitude of movement with conical (20 subjects) or spherical (16) non-porous orbital implants, with and without an EOP, having the contralateral eye as the control group. Standardized photographs were obtained in the four gaze directions and measurements were performed using the Image J software.
The ideal implant for anophthalmic socket reconstruction has yet to be developed. Biosilicate, a highly bioactive glass-ceramic, has been used in the composition of conical implants, which were initially tested in rabbit orbits with excellent results. However, the use of this material and the conical shape of the implants require further study in the human anophthalmic socket.
View Article and Find Full Text PDFBiomaterials and bone grafts, with the ability of stimulating tissue growth and bone consolidation, have been emerging as very promising strategies to treat bone fractures. Despite its well-known positive effects of biosilicate (BS) on osteogenesis, its use as bone grafts in critical situations such as bone defects of high dimensions or in non-consolidated fractures may not be sufficient to stimulate tissue repair. Consequently, several approaches have been explored to improve the bioactivity of BS.
View Article and Find Full Text PDFBiomed Mater Eng
February 2019
This study aimed to investigate the in vivo tissue response of the Biosilicate® scaffolds in a model of tibial bone defect. Sixty male Wistar rats were distributed into bone defect control group (CG) and Biosilicate® scaffold group (BG). Animals were euthanized 15, 30 and 45 days post-surgery.
View Article and Find Full Text PDFThis study evaluated the effect of a bioactive glass ceramic for the control of erosion and caries lesions. Fragments (n=10) of bovine enamel and root dentin received daily application of different treatments (Biosilicate; Acidulated Phosphate Fluoride- APF; Untreated - control) during the performance of erosive cycles. Surfaces were analyzed with 3D optical profilometry to quantify the superficial loss in four periods (1, 7, 14 and 21 days), as well as the lesion depth with confocal laser scanning microscopy.
View Article and Find Full Text PDFCalcium phosphates and bioactive glass ceramics have been considered promising biomaterials for use in surgeries. However, their moldability should be further enhanced. We here thereby report the handling, physicochemical features, and morphological characteristics of formulations consisting of carboxymethylcellulose-glycerol and hydroxyapatite-tricalcium phosphate or Biosilicate® particles.
View Article and Find Full Text PDFWe aimed to evaluate the in vitro osteogenic and osteoinductive potentials of BioS-2P and its ability to promote in vivo bone repair. To investigate osteogenic potential, UMR-106 osteoblastic cells were cultured on BioS-2P and Bioglass 45S5 discs in osteogenic medium. The osteoinductive potential was evaluated using mesenchymal stem cells (MSCs) cultured on BioS-2P, Bioglass 45S5 and polystyrene in non-osteogenic medium.
View Article and Find Full Text PDFIn this study, an evaluation was performed to determine the in vitro bioactivity, viability of stem cells, and antibiofilm effect against Streptococcus mutans of two bioactive gel-glass 60SiO-36CaO-4PO (BG-A) and 80SiO-15CaO-5PO (BG-B) compositions. Both materials were bioactive and undergo the formation of hydroxycarbonate apatite (HCA) on their surfaces when immersed in simulated body fluid (SBF) after 12h, but the BG-A composition showed a more significant formation rate. The pH variation of the samples during the test in SBF indicated that an abrupt change had occurred for the BG-A composition within the first few hours, and the pH was subsequently maintained over time, supporting its stronger antibacterial effects against S.
View Article and Find Full Text PDFBiosilicate(®) and Bio-Oss(®) are two commercially available bone substitutes, however, little is known regarding their efficacy in osteoporotic conditions. The purpose of this study was to evaluate the osteogenic properties of both materials, at tissue and molecular level. Thirty-six Wistar rats were submitted to ovariectomy (OVX) for inducing osteoporotic conditions and sham surgery (SHAM) as a control.
View Article and Find Full Text PDFThe mechanical strength of bioactive glasses can be improved by controlled crystallization, turning its use as bulk bone implants viable. However, crystallization may affect the bioactivity of the material. The aim of this study was to develop glass-ceramics of the nominal composition (wt%) 52.
View Article and Find Full Text PDFObjective: This study aimed to investigate the in vivo tissue performance of the association of Biosilicate(®) scaffolds and low-level laser therapy (LLLT) in a tibial bone defects model in rats.
Background Data: Many studies have been demonstrating the osteogenic potential of Biosilicate and LLLT. However, there is a need to investigate the effects of both treatments for bone consolidation.
Purpose: Bioactive glass and bioactive glass-ceramic cone implants were placed in the rabbit eviscerated socket to assess their biocompatibility.
Methods: Fifty-one Norfolk albino rabbits underwent evisceration of the right eye followed by implantation of cones made from Bioglass(®) 45S5 (control group) and two types of bioactive glass-ceramic (Biosilicate(®)), a single- and a two-phase bioactive glass-ceramic implants into the scleral cavity. Postoperative reactions, animal behavior and socket conditions were monitored daily.
Bioactive glasses having chemical compositions between 1Na(2)O-2CaO-3SiO(2) (1N2C3S) and 1.5Na(2)O-1.5CaO-3SiO(2) (1N1C2S) containing 0, 4 and 6 wt.
View Article and Find Full Text PDFThis study assessed the antimicrobial activity of a new bioactive glass-ceramic (Biosilicate®) against anaerobic, microaerophilic, and facultative anaerobic microorganisms. Evaluation of the antimicrobial activity was carried out by three methods, namely agar diffusion, direct contact, and minimal inhibitory concentration (MIC). For the agar diffusion technique, bio glass-ceramic activity was observed against various microorganisms, with inhibition haloes ranging from 9.
View Article and Find Full Text PDFThis study aimed to investigate bone responses to a novel bioactive fully crystallized glass-ceramic of the quaternary system P(2)O(5)-Na(2)O-CaO-SiO(2) (Biosilicate®). Although a previous study demonstrated positive effects of Biosilicate® on in vitro bone-like matrix formation, its in vivo effect was not studied yet. Male Wistar rats (n = 40) with tibial defects were used.
View Article and Find Full Text PDFDentin hypersensitivity (DH) is a painful response to stimulus applied to the open dentinal tubules of a vital tooth. It's a common oral condition, however, without an ideal treatment available yet. This work evaluated in vitro the effect of micron-sized particles from a novel bioactive glass-ceramic (Biosilicate) in occluding open dentinal tubules.
View Article and Find Full Text PDFThe aim of this study was to investigate the histological and histomorphometrical bone response to three Biosilicates with different crystal phases comparing them to Bioglass 45S5 implants used as control. Ceramic glass Biosilicate and Bioglass 45S5 implants were bilaterally inserted in rabbit femurs and harvested after 8 and 12 weeks. Histological examination did not revealed persistent inflammation or foreign body reaction at implantation sites.
View Article and Find Full Text PDFThe aim of this study was to investigate the effects of a novel bioactive material (Biosilicate®) and low-level laser therapy (LLLT) on bone fracture consolidation in osteoporotic rats. Forty female Wistar rats were submitted to ovariectomy (OVX) to induce osteopenia. Eight weeks after surgery, the animals were randomly divided into four groups of 10 animals each: a bone defect control group (CG); a bone defect filled with Biosilicate group (BG); a bone defect filled with Biosilicate and irradiated with LLLT at 60 J/cm(2) group (BG60); and a bone defect filled with Biosilicate and irradiated with LLLT at 120 J/cm(2) group (BG120).
View Article and Find Full Text PDFObjectives: The aims of this research were to evaluate the efficacy of a bioactive glass-ceramic (Biosilicate) and a bioactive glass (Biogran) placed in dental sockets in the maintenance of alveolar ridge and in the osseointegration of Ti implants.
Material And Methods: Six dogs had their low premolars extracted and the sockets were implanted with Biosilicate, Biogran particles, or left untreated. After the extractions, measurements of width and height on the alveolar ridge were taken.
Unlabelled: Changes, destructions and interruptions in middle ear ossicular chain architecture may be caused by infection, trauma, tumors, congenital alterations or prior surgeries. Nonetheless, infectious and inflammatory processes, focal or generalized which affect the middle ear are the most prevalent, causing a great demand for ossiculoplasty. Biosilicato is a new material which can be used in the middle ear with the goal of reconstructing the ossicular chain.
View Article and Find Full Text PDFJ Biomed Mater Res A
September 2007
One of the strategies to improve the mechanical performance of bioactive glasses for load-bearing implant devices has been the development of glass-ceramic materials. The present study aimed to evaluate the effect of a highly bioactive, fully-crystallized glass-ceramic (Biosilicate) of the system P(2)O(5)-Na(2)O-CaO-SiO(2) on various key parameters of in vitro osteogenesis. Surface characterization was carried out by scanning electron microscopy and Fourier transform infrared spectroscopy.
View Article and Find Full Text PDF