Publications by authors named "Oscar P Hurtado-Gonzales"

A sudden, unexplained decline and collapse of young apple trees on dwarfing and semi-dwarfing rootstocks has been reported across North America over the past decade. Although viruses have been detected in declining trees, no information is available on their potential causal role in the decline phenomenon. To this end, virus-inoculated apple trees were established in a high-density experimental orchard and monitored over five years.

View Article and Find Full Text PDF

Sustainable production of pome fruit crops is dependent upon having virus-free planting materials. The production and distribution of plants derived from virus- and viroid-negative sources is necessary not only to control pome fruit viral diseases but also for sustainable breeding activities, as well as the safe movement of plant materials across borders. With variable success rates, different in vitro-based techniques, including shoot tip culture, micrografting, thermotherapy, chemotherapy, and shoot tip cryotherapy, have been employed to eliminate viruses from pome fruits.

View Article and Find Full Text PDF

Many viruses occur in apple ( (Borkh.)), but no information is available on their seed transmissibility. Here, we report that six viruses infecting apple trees, namely, apple chlorotic leaf spot virus (ACLSV), apple green crinkle-associated virus (AGCaV), apple rubbery wood virus 2 (ARWV2), apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), and citrus concave gum-associated virus (CCGaV) occur in seeds extracted from apple fruits produced by infected maternal trees.

View Article and Find Full Text PDF

Background: Detection of exotic plant pathogens and preventing their entry and establishment are critical for the protection of agricultural systems while securing the global trading of agricultural commodities. High-throughput sequencing (HTS) has been applied successfully for plant pathogen discovery, leading to its current application in routine pathogen detection. However, the analysis of massive amounts of HTS data has become one of the major challenges for the use of HTS more broadly as a rapid diagnostics tool.

View Article and Find Full Text PDF

Türkiye is a major apple fruit producer in the crossroads of Europe and the Middle East. Several reports have described the presence of multiple viruses affecting apple production in Türkiye, including apple stem grooving virus (ASGV), apple stem pitting virus (ASPV), apple chlorotic leafspot virus (ACLSV), and apple mosaic virus (ApMV) (Kurçman 1977; Fidan 1994; Çağlayan et al. 2003).

View Article and Find Full Text PDF

High-throughput sequencing (HTS), more specifically RNA sequencing of plant tissues, has become an indispensable tool for plant virologists to detect and identify plant viruses. During the data analysis step, plant virologists typically compare the obtained sequences to reference virus databases. In this way, they are neglecting sequences without homologies to viruses, which usually represent the majority of sequencing reads.

View Article and Find Full Text PDF

A new positive-strand RNA virus was discovered in a horse nettle plant, using high-throughput sequencing (HTS), and its complete genome, consisting of RNA1 and RNA2, which are 7522 and 4710 nucleotides in length, respectively, was characterized. Each genome segment contains a single open reading frame flanked by 5' and 3' untranslated regions (UTRs), followed by a poly(A) tail at the 3' end. The encoded proteins have the highest amino acid sequence identity (55% and 45%) to the polyprotein encoded by RNA1 of tomato black ring virus (TBRV) and RNA2 of potato virus B (PVB), respectively.

View Article and Find Full Text PDF

A comprehensive diagnostic method of known plant viruses and viroids is necessary to provide an accurate phytosanitary status of fruit trees. However, most widely used detection methods have a small limit on either the number of targeted viruses/viroids or the number of samples to be evaluated at a time, hampering the ability to rapidly scale up the test capacity. Here we report that by combining the power of high multiplexing PCR (499 primer pairs) of small amplicons (120-135bp), targeting 27 viruses and 7 viroids of fruit trees, followed by a single high-throughput sequencing (HTS) run, we accurately diagnosed the viruses and viroids on as many as 123 pome and stone fruit tree samples.

View Article and Find Full Text PDF

Virus and viroid-free apple rootstocks are necessary for large-scale nursery propagation of apple () trees. Apple stem grooving virus (ASGV) and Apple chlorotic leaf spot virus (ACLSV) are among the most serious apple viruses that are prevalent in most apple growing regions. In addition to these viruses, a new infectious agent named Apple hammerhead viroid (AHVd) has been identified.

View Article and Find Full Text PDF

In the present study we report the identification of a novel partitivirus recovered from Miscanthus sinensis, for which the provisional name "silvergrass cryptic virus 1" (SgCV-1) is proposed. High-throughput sequencing (HTS) and rapid amplification of cDNA ends (RACE) allowed the assembly of the complete sequence of each double-stranded RNA genome segment of this novel virus. The largest dsRNA segment, dsRNA1 (1699 bp), was predicted to encode a viral RNA-dependent RNA polymerase protein (RdRp) with 478 aa, and dsRNA2 (1490 bp) and dsRNA3 (1508 bp) were predicted to encode putative capsid proteins (CPs) with 347 and 348 aa, respectively.

View Article and Find Full Text PDF

Rapid global germplasm trade has increased concern about the spread of plant pathogens and pests across borders that could become established, affecting agriculture and environment systems. Viral pathogens are of particular concern due to their difficulty to control once established. A comprehensive diagnostic platform that accurately detects both known and unknown virus species, as well as unreported variants, is playing a pivotal role across plant germplasm quarantine programs.

View Article and Find Full Text PDF

Eriophyid mites are commonly found on the leaf surface of different plant species. In the present study, a novel virus associated with an eriophyid mite species was detected using high-throughput sequencing (HTS) of total RNA from fruit tree leaves, primarily growing under greenhouse conditions. The complete genome sequence was characterized using rapid amplification of cDNA ends followed by Sanger sequencing, revealing a genome of 8885 nucleotides in length.

View Article and Find Full Text PDF

Linkage and genome-wide association analyses using high-throughput SNP genotyping revealed different loci controlling resistance to different isolates of race 65 of Colletotrichum lindemuthianum in common bean. Development of varieties with durable resistance to anthracnose is a major challenge in common bean breeding programs because of the extensive virulence diversity of Colletotrichum lindemuthianum fungus. We used linkage and genome-wide association analyses to tap the genomic regions associated with resistance to different isolates of race 65.

View Article and Find Full Text PDF

Anthracnose, caused by the fungal pathogen Colletotrichum lindemuthianum, is one of the world's most destructive diseases of common bean. The use of resistant cultivars is the most cost-effective strategy to manage this disease; however, durable resistance is difficult to achieve due to the vast virulence diversity of the anthracnose pathogen. Finding new genes with broad-spectrum resistance increases the prospect of designing an effective anthracnose-management strategy.

View Article and Find Full Text PDF

Co-segregation analysis and high-throughput genotyping using SNP, SSR, and KASP markers demonstrated genetic linkage between Ur-14 and Co-3 /Phg-3 loci conferring resistance to the rust, anthracnose and angular leaf spot diseases of common bean. Rust, anthracnose, and angular leaf spot are major diseases of common bean in the Americas and Africa. The cultivar Ouro Negro has the Ur-14 gene that confers broad spectrum resistance to rust and the gene cluster Co-3 /Phg-3 containing two tightly linked genes conferring resistance to anthracnose and angular leaf spot, respectively.

View Article and Find Full Text PDF

Background: The Andean cultivar Paloma is resistant to Mesoamerican and Andean races of Colletotrichum lindemuthianum, the fungal pathogen that causes the destructive anthracnose disease in common bean. Remarkably, Paloma is resistant to Mesoamerican races 2047 and 3481, which are among the most virulent races of the anthracnose pathogen. Most genes conferring anthracnose resistance in common bean are overcome by these races.

View Article and Find Full Text PDF

Bean rust, caused by , is a devastating disease of common bean () in the Americas and Africa. The historically important gene confers resistance to many races of the highly variable bean rust pathogen that overcome other rust resistance genes. Existing molecular markers tagging for use in marker-assisted selection produce false results.

View Article and Find Full Text PDF

The oomycete vegetable pathogen Phytophthora capsici has shown remarkable adaptation to fungicides and new hosts. Like other members of this destructive genus, P. capsici has an explosive epidemiology, rapidly producing massive numbers of asexual spores on infected hosts.

View Article and Find Full Text PDF