Talanta
March 2007
The purpose of this paper is to develop an easy and quick on-line selenium speciation method (LC-UV-HG-AFS) in cow milk obtained after different supplementation to cow feed. This study focuses on selenium speciation in cow milk after the use of different selenium species (organic selenium as selenised yeast and inorganic selenium as sodium selenite) in the supplementation of forages. Separation was carried out on a muBondapack C(18) column with the positively charged ion-pairing agent tetraethylammonium chloride in the mobile phase.
View Article and Find Full Text PDFThe purpose of the work described in this paper was to develop an easy and quick in-vitro method for comparing the bioavailability of selenium in cows' milk after different cow feed. The study focuses on bioavailability differences resulting from the use of different selenium species (organic selenium as selenised yeast and sodium selenite) for supplementation of forage. A procedure for determination of selenium in cows' milk and dialysates, by hydride-generation atomic-fluorescence spectrometry (HG-AFS) after microwave-assisted acid digestion, was optimised.
View Article and Find Full Text PDFThe effect of two sources of Se, selenized yeast (Se-Y) and sodium selenite, added to total mixed rations (TMR) fed to cows on Se milk content and distribution in milk components was studied on three farms for 6 weeks. The maximal increase in milk Se was attained with Se-Y supplemented at 0.3 microg g(-1).
View Article and Find Full Text PDFA procedure has been developed for determining the selenium in cow's milk using hydride generation-atomic absorption spectrometry (HG-AAS) following microwave-assisted acid digestion. The selenium distributions in milk whey, fat and micellar casein phases were studied after separating the different phases by ultracentrifugation and determining the selenium in all of them. The detection limits obtained by HG-AAS for the whole milk, milk whey and micellar casein were 0.
View Article and Find Full Text PDF