Publications by authors named "Oscar Mesquita"

Cell membrane deformation is an important feature that occurs during many physiological processes, and its study has been put to good use to investigate cardiomyocyte function. Several methods have been developed to extract information on cardiomyocyte contractility. However, no existing computational framework has provided, in a single platform, a straightforward approach to acquire, process, and quantify this type of cellular dynamics.

View Article and Find Full Text PDF

The optical and morphological properties of resveratrol were investigated. This nontoxic fluorescent natural material, emitting in the visible blue light, was used as an optical marker, enabling the enhancement of the image contrast coming from relief pictures marked on challenging surfaces. By applying appropriated imaging softwares, this marker was verified to be very useful in the latent fingerprint recognition deposited on different wood surface types, mainly those with high level of roughness, where conventional forensic materials do not allow effective fingerprint image visualization.

View Article and Find Full Text PDF

Defocusing microscopy (DM) is a bright-field optical microscopy technique often used to obtain structural parameters of objects with low difference in refractive index in relation to the surrounding medium (phase objects). We show a use of this technique to measure the refractive index (n) profile of waveguides produced by femtosecond laser micromachining inside the bulk of a sodalime glass. The results are used to analyze the influence of production parameters on n.

View Article and Find Full Text PDF

We use a quantitative phase imaging technique, defocusing microscopy (DM), to measure morphological, chemical, and mechanical parameters of individual red blood cells (RBCs) immersed in solutions with different osmolalities. We monitor the RBCs’ radius, volume, surface area, sphericity index, and hemoglobin content and concentration. The complete shape of cells is recovered and the effects of their adhesion to the glass substrate are observed.

View Article and Find Full Text PDF

Background: Plasmodium vivax accounts for the majority of human malaria infections outside Africa and is being increasingly associated in fatal outcomes with anaemia as one of the major complications. One of the causes of malarial anaemia is the augmented removal of circulating non-infected red blood cells (nRBCs), an issue not yet fully understood. High levels of auto-antibodies against RBCs have been associated with severe anaemia and reduced survival of nRBCs in patients with falciparum malaria.

View Article and Find Full Text PDF

In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis.

View Article and Find Full Text PDF

We present a real-time method to measure the amplitude of thermal fluctuations in biological membranes by means of a new treatment of the defocusing microscopy (DM) optical technique. This approach was also applied to study the deformation of human erythrocytes to its echinocyte structure. This was carried out by making three-dimensional shape reconstructions of the cell and measuring the thermal fluctuations of its membrane, as the cell is exposed to the anti-inflammatory drug naproxen and as it recovers its original shape, when it is subsequently cleansed of the drug.

View Article and Find Full Text PDF

Background: Trypomastigotes of Trypanosoma cruzi are able to invade several types of non-phagocytic cells through a lysosomal dependent mechanism. It has been shown that, during invasion, parasites trigger host cell lysosome exocytosis, which initially occurs at the parasite-host contact site. Acid sphingomyelinase released from lysosomes then induces endocytosis and parasite internalization.

View Article and Find Full Text PDF

Mutalysin II (mut-II) is an alpha-fibrinogenase isolated from Lachesis muta muta (bushmaster) snake venom. The enzyme lyses fibrin clots in vitro, and this activity does not depend on plasminogen activation. The aim of this study was to assess by intravital microscopy the effect of Mutalysin II on the recanalization of microvessels after thrombus induction in the ears of hairless mice.

View Article and Find Full Text PDF
Living cell motility.

Philos Trans A Math Phys Eng Sci

February 2008

The motility of living eukaryotic cells is a complex process driven mainly by polymerization and depolymerization of actin filaments underneath the plasmatic membrane (actin cytoskeleton). However, the exact mechanisms through which cells are able to control and employ 'actin-generated' mechanical forces, in order to change shape and move in a well-organized and coordinated way, are not quite established. Here, we summarize the experimental results obtained by our research group during recent years in studying the motion of living cells, such as macrophages and erythrocytes.

View Article and Find Full Text PDF

We present a review on two new tools to study biophysical properties of single molecules and single cells. A laser incident through a high numerical aperture microscope objective can trap small dielectric particles near the focus. This arrangement is named optical tweezers.

View Article and Find Full Text PDF

Defocusing microscopy (DM) is a recently developed technique that allows quantitative analysis of membrane surface dynamics of living cells using a simple bright-field optical microscope. According to DM, the contrast of defocused images is proportional to cell surface curvature. Although, until now, this technique was used mainly to determine size and amount of membrane shape fluctuations, such as ruffles and small random membrane fluctuations, in macrophages, its applications on cell biology extend beyond that.

View Article and Find Full Text PDF

Defocusing microscopy was used for real-time observation and quantification of membrane surface dynamics in murine bone marrow macrophages. Small random membrane fluctuations (SRMF), possibly metabolic driven, were detected uniformly over all membrane surface. Morphological and dynamical parameters of ruffles, such as shape, dimensions, and velocity of propagation, were analyzed.

View Article and Find Full Text PDF