Reinforcement Learning (RL) comes with the promise of automating network management. However, due to its trial-and-error learning approach, model-based RL (MBRL) is not applicable in some network management scenarios. This paper explores the potential of using Automated Planning (AP) to achieve this MBRL in the functional areas of network management.
View Article and Find Full Text PDFHandover Management (HM) is pivotal for providing service continuity, enormous reliability and extreme-low latency, and meeting sky-high data rates, in wireless communications. Current HM approaches based on a single criterion may lead to unnecessary and frequent handovers due to a partial network view that is constrained to information about link quality. In turn, HM approaches based on multicriteria may present a failure of handovers and wrong network selection, decreasing the throughput and increasing the packet loss in the network.
View Article and Find Full Text PDFRealizing autonomic management control loops is pivotal for achieving self-driving networks. Some studies have recently evidence the feasibility of using Automated Planning (AP) to carry out these loops. However, in practice, the use of AP is complicated since network administrators, who are non-experts in Artificial Intelligence, need to define network management policies as AP-goals and combine them with the network status and network management tasks to obtain AP-problems.
View Article and Find Full Text PDF