Publications by authors named "Oscar Marin"

Synchronous neuronal activity is a hallmark of the developing brain. In the mouse cerebral cortex, activity decorrelates during the second week of postnatal development, progressively acquiring the characteristic sparse pattern underlying the integration of sensory information. The maturation of inhibition seems critical for this process, but the interneurons involved in this crucial transition of network activity in the developing cortex remain unknown.

View Article and Find Full Text PDF

Parvalbumin-expressing (PV+) interneurons represent one of the most abundant subclasses of cortical interneurons. Owing to their specific electrophysiological and synaptic properties, PV+ interneurons are essential for gating and pacing the activity of excitatory neurons. In particular, PV+ interneurons are critically involved in generating and maintaining cortical rhythms in the gamma frequency, which are essential for complex cognitive functions.

View Article and Find Full Text PDF

In this work, we present a metal-free coupling protocol for the regio- and stereoselective C3-thioarylation of 6-amino-2,3,6-trideoxy-d-manno-oct-2-ulosonic acid (iminoKdo). The developed procedure enables the coupling of electron-rich, electron-deficient, and hindered arylthiols, providing a series of C3-modified iminoKdo derivatives in moderate to good yields. Elucidation of active species through controlled experimental studies and time-lapse P NMR analysis provides insights into the reaction mechanism.

View Article and Find Full Text PDF

The mammalian cerebral cortex contains an extraordinary diversity of cell types that emerge by implementing different developmental programs. Delineating when and how cellular diversification occurs is particularly challenging for cortical inhibitory neurons because they represent a small proportion of all cortical cells and have a protracted development. Here, we combine single-cell RNA sequencing and spatial transcriptomics to characterize the emergence of neuronal diversity among somatostatin-expressing (SST+) cells in mice.

View Article and Find Full Text PDF

The emergence of the three germ layers and the lineage-specific precursor cells orchestrating organogenesis represent fundamental milestones during early embryonic development. We analyzed the transcriptional profiles of over 400,000 cells from 14 human samples collected from post-conceptional weeks (PCW) 3 to 12 to delineate the dynamic molecular and cellular landscape of early gastrulation and nervous system development. We described the diversification of cell types, the spatial patterning of neural tube cells, and the signaling pathways likely involved in transforming epiblast cells into neuroepithelial cells and then into radial glia.

View Article and Find Full Text PDF
Article Synopsis
  • Neurons rely on local protein synthesis to maintain their complex structure, particularly at individual synapses.
  • Researchers discovered a signaling pathway that controls the local production of proteins necessary for forming excitatory synapses on specific interneurons in the mouse brain.
  • This pathway involves the regulation of Tsc2 by ErbB4, which helps tailor mRNA translation to specific cell and synapse types, demonstrating how local protein synthesis is crucial for synapse formation in the nervous system.
View Article and Find Full Text PDF

Background: While a variety of evidence supports a prenatal component in schizophrenia, there are few data regarding the cell populations involved. We sought to identify cells of the human prenatal brain mediating genetic risk for schizophrenia by integrating cell-specific gene expression measures generated through single-nuclei RNA sequencing with recent large-scale genome-wide association study (GWAS) and exome sequencing data for the condition.

Methods: Single-nuclei RNA sequencing was performed on 5 brain regions (frontal cortex, ganglionic eminence, hippocampus, thalamus, and cerebellum) from 3 fetuses from the second trimester of gestation.

View Article and Find Full Text PDF

The granular dorsolateral prefrontal cortex (dlPFC) is an evolutionary specialization of primates that is centrally involved in cognition. We assessed more than 600,000 single-nucleus transcriptomes from adult human, chimpanzee, macaque, and marmoset dlPFC. Although most cell subtypes defined transcriptomically are conserved, we detected several that exist only in a subset of species as well as substantial species-specific molecular differences across homologous neuronal, glial, and non-neural subtypes.

View Article and Find Full Text PDF

One key factor underlying the functional balance of cortical networks is the ratio of excitatory and inhibitory neurons. The mechanisms controlling the ultimate number of interneurons are beginning to be elucidated, but to what extent similar principles govern the survival of the large diversity of cortical inhibitory cells remains to be investigated. Here, we investigate the mechanisms regulating developmental cell death in neurogliaform cells, bipolar cells, and basket cells, the three main populations of interneurons originating from the caudal ganglionic eminence and the preoptic region.

View Article and Find Full Text PDF

The assembly of functional neuronal circuits requires appropriate numbers of distinct classes of neurons, but the mechanisms through which their relative proportions are established remain poorly defined. Investigating the mouse striatum, we found that the two most prominent subtypes of striatal interneurons, parvalbumin-expressing (PV+) GABAergic and cholinergic (ChAT+) interneurons, undergo extensive programmed cell death between the first and second postnatal weeks. Remarkably, the survival of PV+ and ChAT+ interneurons is regulated by distinct mechanisms mediated by their specific afferent connectivity.

View Article and Find Full Text PDF

Genetic variation confers susceptibility to neurodevelopmental disorders by affecting the development of specific cell types. Changes in cortical and striatal γ-aminobutyric acid–expressing (GABAergic) neurons are common in autism and schizophrenia. In this study, we used single-cell RNA sequencing to characterize the emergence of cell diversity in the human ganglionic eminences, the transitory structures of the human fetal brain where striatal and cortical GABAergic neurons are generated.

View Article and Find Full Text PDF
Article Synopsis
  • The study looked at how different ways to clean up brain wave data from babies (called ERPs) can affect the results.
  • Researchers compared four editors: three human experts and one computer program, to see how much they agreed on what data to keep.
  • They found that there were big differences in the results based on who or what did the editing, which is important for improving how we analyze these types of studies in baby research.
View Article and Find Full Text PDF

Background: Managed honey bees are key pollinators of many crops and play an essential role in the United States food production. For more than ten years, beekeepers in the United States have been reporting high rates of colony losses. One of the drivers of these losses is the parasitic mite Varroa destructor.

View Article and Find Full Text PDF

is an ectoparasitic mite causing devastating damages to honey bee colonies around the world. Its impact is considered a major factor contributing to the significant seasonal losses of colonies recorded every year. Beekeepers usually rely on a reduced set of acaricides to manage the parasite, usually the pyrethroids tau-fluvalinate or flumethrin, the organophosphate coumaphos, and the formamidine amitraz.

View Article and Find Full Text PDF

The assembly of specific neuronal circuits relies on the expression of complementary molecular programs in presynaptic and postsynaptic neurons. In the cerebral cortex, the tyrosine kinase receptor ErbB4 is critical for the wiring of specific populations of GABAergic interneurons, in which it paradoxically regulates both the formation of inhibitory synapses as well as the development of excitatory synapses received by these cells. Here, we found that Nrg1 and Nrg3, two members of the neuregulin family of trophic factors, regulate the inhibitory outputs and excitatory inputs of interneurons in the mouse cerebral cortex, respectively.

View Article and Find Full Text PDF

In mammals, the construction of the cerebral cortex involves the coordinated output of large populations of apical progenitor cells. Cortical progenitor cells use intrinsic molecular programs and complex regulatory mechanisms to generate a large diversity of excitatory projection neurons in appropriate numbers. In this review, we summarize recent findings regarding the neurogenic behavior of cortical progenitors during neurogenesis.

View Article and Find Full Text PDF

The formation of the human brain, which contains nearly 100 billion neurons making an average of 1000 connections each, represents an astonishing feat of self-organization. Despite impressive progress, our understanding of how neurons form the nervous system and enable function is very fragmentary, especially for the human brain. New technologies that produce large volumes of high-resolution measurements-big data-are now being brought to bear on this problem.

View Article and Find Full Text PDF

To understand the function of cortical circuits, it is necessary to catalog their cellular diversity. Past attempts to do so using anatomical, physiological or molecular features of cortical cells have not resulted in a unified taxonomy of neuronal or glial cell types, partly due to limited data. Single-cell transcriptomics is enabling, for the first time, systematic high-throughput measurements of cortical cells and generation of datasets that hold the promise of being complete, accurate and permanent.

View Article and Find Full Text PDF

The cerebral cortex contains multiple areas with distinctive cytoarchitectonic patterns, but the cellular mechanisms underlying the emergence of this diversity remain unclear. Here, we have investigated the neuronal output of individual progenitor cells in the developing mouse neocortex using a combination of methods that together circumvent the biases and limitations of individual approaches. Our experimental results indicate that progenitor cells generate pyramidal cell lineages with a wide range of sizes and laminar configurations.

View Article and Find Full Text PDF
Article Synopsis
  • The brain's development involves a significant loss of neurons, with many generated during early embryonic stages being eliminated.
  • Two primary waves of programmed cell death (apoptosis) occur: one during embryonic development affecting progenitor cells, and a larger one in early postnatal stages that defines the final number of neurons.
  • Neuronal activity plays a crucial role in this process, balancing the numbers of excitatory pyramidal cells and inhibitory interneurons, while many other neuron types are almost completely removed in the early postnatal period.
View Article and Find Full Text PDF

Compensated pathogenic deviations (CPDs) are sequence variants that are pathogenic in humans but neutral in other species. In recent years, our molecular understanding of CPDs has advanced substantially. For example, it is known that their impact on human proteins is generally milder than that of average pathogenic mutations and that their impact is suppressed in non-human carriers by compensatory mutations.

View Article and Find Full Text PDF

Background: Human papillomavirus (HPV) testing for cervical cancer prevention was introduced in Argentina through the Jujuy Demonstration Project (2011-14). The programme tested women aged 30 years and older attending the public health system with clinician-collected HPV tests. HPV self-collection was introduced as a programmatic strategy in 2014.

View Article and Find Full Text PDF