The Antarctic marine environment is a dynamic ecosystem where microorganisms play an important role in key biogeochemical cycles. Despite the role that microbes play in this ecosystem, little is known about the genetic and metabolic diversity of Antarctic marine microbes. In this study we leveraged DNA samples collected by the Palmer Long Term Ecological Research (LTER) project to sequence shotgun metagenomes of 48 key samples collected across the marine ecosystem of the western Antarctic Peninsula (wAP).
View Article and Find Full Text PDFThe krill surplus hypothesis of unlimited prey resources available for Antarctic predators due to commercial whaling in the 20th century has remained largely untested since the 1970s. Rapid warming of the Western Antarctic Peninsula (WAP) over the past 50 years has resulted in decreased seasonal ice cover and a reduction of krill. The latter is being exacerbated by a commercial krill fishery in the region.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
June 2018
The West Antarctic Peninsula (WAP) is a climatically sensitive region where periods of strong warming have caused significant changes in the marine ecosystem and food-web processes. Tight coupling between phytoplankton and higher trophic levels implies that the coastal WAP is a bottom-up controlled system, where changes in phytoplankton dynamics may largely impact other food-web components. Here, we analysed the inter-decadal time series of year-round chlorophyll- (Chl) collected from three stations along the coastal WAP: Carlini Station at Potter Cove (PC) on King George Island, Palmer Station on Anvers Island and Rothera Station on Adelaide Island.
View Article and Find Full Text PDFUnderstanding the mechanisms by which climate variability affects multiple trophic levels in food webs is essential for determining ecosystem responses to climate change. Here we use over two decades of data collected by the Palmer Long Term Ecological Research program (PAL-LTER) to determine how large-scale climate and local physical forcing affect phytoplankton, zooplankton and an apex predator along the West Antarctic Peninsula (WAP). We show that positive anomalies in chlorophyll-a (chl-a) at Palmer Station, occurring every 4-6 years, are constrained by physical processes in the preceding winter/spring and a negative phase of the Southern Annular Mode (SAM).
View Article and Find Full Text PDFThe mechanisms of coral calcification at the molecular, cellular and tissue levels are poorly understood. In this study, we examine calcium carbonate precipitation using novel coral tissue cultures that aggregate to form "proto-polyps". Our goal is to establish an experimental system in which calcification is facilitated at the cellular level, while simultaneously allowing in vitro manipulations of the calcifying fluid.
View Article and Find Full Text PDFTrait-based approaches to community structure are increasingly used in terrestrial ecology. We show that such an approach, augmented by a mechanistic analysis of trade-offs among functional traits, can be successfully used to explain community composition of marine phytoplankton along environmental gradients. Our analysis of literature on major functional traits in phytoplankton, such as parameters of nutrient-dependent growth and uptake, reveals physiological trade-offs in species abilities to acquire and utilize resources.
View Article and Find Full Text PDFEukaryotic genome size varies over five orders of magnitude; however, the distribution is strongly skewed toward small values. Genome size is highly correlated to a number of phenotypic traits, suggesting that the relative lack of large genomes in eukaryotes is due to selective removal. Using phylogenetic contrasts, we show that the rate of genome size evolution is proportional to genome size, with the fastest rates occurring in the largest genomes.
View Article and Find Full Text PDFWe applied two numerical methods to in situ hyperspectral measurements of remote sensing reflectance Rrs to assess the feasibility of remote detection and monitoring of the toxic dinoflagellate, Karenia brevis, which has been shown to exhibit unique absorption properties. First, an existing quasi-analytical algorithm was used to invert remote sensing reflectance spectra, Rrs(lambda), to derive phytoplankton absorption spectra, a(phi)Rrs(lambda). Second, the fourth derivatives of the a(phi)Rrs(lambda) spectra were compared to the fourth derivative of a reference K.
View Article and Find Full Text PDFWe present a simple nutrient-phytoplankton-zooplankton (NPZ) model that incorporates adaptive evolution and allometric relations to examine the patterns and consequences of adaptive changes in plankton body size. Assuming stable environmental conditions, the model makes the following predictions. First, phytoplankton should evolve toward small sizes typical of picoplankton.
View Article and Find Full Text PDFNumerous taxonomic groups exhibit an evolutionary trajectory in cell or body size. The size structure of marine phytoplankton communities strongly affects food web structure and organic carbon export into the ocean interior, yet macroevolutionary patterns in the size structure of phytoplankton communities have not been previously investigated. We constructed a database of the size of the silica frustule of the dominant fossilized marine planktonic diatom species over the Cenozoic.
View Article and Find Full Text PDFThe majority of organic carbon in the oceans is present as dissolved organic matter (DOM); therefore understanding the distribution and dynamics of DOM is central to understanding global carbon cycles. Describing the time-space variability in colored dissolved organic matter (CDOM) has been difficult, as standard spectrophotometric methods for CDOM determination are laborious and susceptible to methodological biases. Previously, measurements of CDOM absorption in discrete water samples by use of a liquid-waveguide capillary cell (LWCC) compared favorably with measurements made with a benchtop spectrophotometer.
View Article and Find Full Text PDF