Publications by authors named "Oscar Danilo Montoya"

This research addresses the power flow analysis in bipolar asymmetric direct current (DC) networks by applying Broyden's numerical method. This general successive approximations method allows for a simple Newton-based recursive formula to reach the roots of multiple nonlinear equations. The main advantage of Broyden's approach is its simple but efficient structure which can be applied to real complex nonlinear equations.

View Article and Find Full Text PDF

This paper deals with the problem regarding the optimal siting and sizing of distribution static compensators (D-STATCOMs) in electrical distribution networks to minimize the expected total annual operating costs. These costs are associated with the investments made in D-STATCOMs and expected energy losses costs. To represent the electrical behavior of the distribution networks, a power flow formulation is used which includes voltages, currents, and power as variables via incidence matrix representation.

View Article and Find Full Text PDF

This paper analyzes the power flow solution in bipolar direct current networks with radial structures considering multiple monopolar and bipolar constant power loads. The electrical configuration of the bipolar DC grid considers that the reference pole is non-grounded along the feeder, which produces important neutral currents and voltage imbalances along the DC grid. The power flow problem is formulated through the triangular-based representation of the grid topology, which generates a recursive formulation that allows determining the voltage values in the demand nodes through an iterative procedure.

View Article and Find Full Text PDF

This paper discusses the minimization of the total annual operative cost for a planning period of 20 years composed by the annualized costs of the energy purchasing at the substation bus summed with the annualized investment costs in photovoltaic (PV) sources, including their maintenance costs in distribution networks based on their optimal siting and sizing. This problem is presented using a mixed-integer nonlinear programming model, which is resolved by applying a master-slave methodology. The master stage, consisting of a discrete-continuous version of the Vortex Search Algorithm (DCVSA), is responsible for providing the optimal locations and sizes for the PV sources-whereas the slave stage employs the Matricial Backward/Forward Power Flow Method, which is used to determine the fitness function value for each individual provided by the master stage.

View Article and Find Full Text PDF

The problem of voltage regulation in unknown constant resistive loads is addressed in this paper from the nonlinear control point of view for second-order DC-DC converters. The converters' topologies analyzed are: (i) buck converter, (ii) boost converter, (iii) buck-boost converter, and (iv) non-inverting buck-boost converter. The averaging modeling method is used to model these converters, representing all these converter topologies with a generalized port-Controlled Hamiltonian (PCH) representation.

View Article and Find Full Text PDF