BMJ Open
December 2024
Introduction: The current gold standard treatment for patients with orofacial clefts is surgical repair of the palatal defect (uranostaphylorrhaphy), which is associated with growth defects and hypoplasia of the maxillofacial structures. This trial aims to evaluate the potential of a bioengineered artificial palate mucosa, created through tissue engineering with autologous stromal and epithelial cells and nanostructured fibrin-agarose biomaterials, to enhance treatment outcomes for patients with unilateral cleft lip and palate.
Methods And Analysis: This phase I-IIa clinical trial aims to evaluate the feasibility and biosafety of a procedure involving grafting bioartificial palate mucosa onto the areas of denudated bone in patients undergoing uranostaphylorrhaphy.
Nervous system traumatic injuries are prevalent in our society, with a significant socioeconomic impact. Due to the highly complex structure of the neural tissue, the treatment of these injuries is still a challenge. Recently, 3D printing has emerged as a promising alternative for producing biomimetic scaffolds, which can lead to the restoration of neural tissue function.
View Article and Find Full Text PDFNeural Invasion (NI) is a key pathological feature of cancer in the colonization of distant tissues, and its underlying biological mechanisms are still scarcely known. The complex interactions between nerve and tumor cells, along with the stroma, make it difficult to reproduce this pathology in effective study models, which in turn has limited the understanding of NI pathogenesis. In this study, we have designed a three-dimensional model of NI squamous cell carcinoma combining human epidermoid carcinoma cells (hECCs) with a complete peripheral nerve segment encapsulated in a fibrine-agarose hydrogel.
View Article and Find Full Text PDFTraumatic nerve injuries are nowadays a significant clinical challenge and new substitutes with adequate biological and mechanical properties are in need. In this context, fibrin-agarose hydrogels (FA) have shown the possibility to generate tubular scaffolds with promising results for nerve repair. However, to be clinically viable, these scaffolds need to possess enhanced mechanical properties.
View Article and Find Full Text PDFThe myelin sheath is a lipoprotein-rich, multilayered structure capable of increasing conduction velocity in central and peripheral myelinated nerve fibers. Due to the complex structure and composition of myelin, various histological techniques have been developed over the centuries to evaluate myelin under normal, pathological or experimental conditions. Today, methods to assess myelin integrity or content are key tools in both clinical diagnosis and neuroscience research.
View Article and Find Full Text PDFAs a reliable alternative to autografts, decellularized peripheral nerve allografts (DPNAs) should mimic the complex microstructure of native nerves and be immunogenically compatible. Nevertheless, there is a current lack of decellularization methods able to remove peripheral nerve cells without significantly altering the nerve extracellular matrix (ECM). The aims of this study are firstly to characterize , in a histological, biochemical, biomechanical and ultrastructural way, three novel chemical-enzymatic decellularization protocols (P1, P2 and P3) in rat sciatic nerves and compared with the Sondell classic decellularization method and then, to select the most promising DPNAs to be tested .
View Article and Find Full Text PDFFibrin hydrogels made by self-assembly of fibrinogen obtained from human plasma have shown excellent biocompatible and biodegradable properties and are widely used in regenerative medicine. The fibrinogen self-assembly process can be triggered under physiological conditions by the action of thrombin, allowing the injection of pregel mixtures that have been used as cell carriers, wound-healing systems, and bio-adhesives. However, access to fibrinogen from human plasma is expensive and fibrin gels have limited mechanical properties, which make them unsuitable for certain applications.
View Article and Find Full Text PDFWharton's jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to preserve their unique features. The basement membrane (BM) is an essential structure during embryonic development and in adult tissues.
View Article and Find Full Text PDFGrowth-associated protein 43 plays a key role in neurite outgrowth through cytoskeleton remodeling. We have previously demonstrated that structural damage of peripheral nerves induces growth-associated protein 43 upregulation to promote growth cone formation. Conversely, the limited regenerative capacity of the central nervous system due to an inhibitory environment prevents major changes in neurite outgrowth and should be presumably associated with low levels of growth-associated protein 43 expression.
View Article and Find Full Text PDFHollow conduits of natural or synthetic origins have shown acceptable regeneration results in short nerve gap repair; however, results are still not comparable with the current gold standard technique "autografts". Hollow conduits do not provide a successful regeneration outcome when it comes to critical nerve gap repair. Enriching the lumen of conduits with different extracellular materials and cells could provide a better biomimicry of the natural nerve regenerating environment and is expected to ameliorate the conduit performance.
View Article and Find Full Text PDFHistochemical and fluorescence-based techniques enable the specific identification of myelin by bright-field or fluorescence microscopy. In this chapter, we describe four histological methods for the evaluation of myelin on peripheral nerve tissue sections. The first method combines the Luxol fast blue (LFB) technique with a modified Picrosirius staining contrasted with Harris hematoxylin, called MCOLL.
View Article and Find Full Text PDFStudents' metacognitive skills and perceptions are considered important variables for high-quality learning. In this study, students' perceptions were used to identify histological threshold concepts (integrative, irreversible, transformative, and troublesome) in three health sciences curricula. A specific questionnaire was developed and validated to characterize students' perceptions of histological threshold concepts.
View Article and Find Full Text PDFHuman skin keratinocyte primary cultures can be established from skin biopsies with culture media containing epithelial growth factor (EGF). Although current methods are efficient, optimization is required to accelerate the procedure and obtain these cultures in less time. In the present study, we evaluated the effect of novel formulations based on EGF-loaded nanostructured lipid carriers (NLC).
View Article and Find Full Text PDFPatients with severe limbal damage and limbal stem cell deficiency are a therapeutic challenge. We evaluated four decellularization protocols applied to the full-thickness and half-thickness porcine limbus, and we used two cell types to recellularize the decellularized limbi. The results demonstrated that all protocols achieved efficient decellularization.
View Article and Find Full Text PDFConsidering the high prevalence of cartilage-associated pathologies, low self-repair capacity and limitations of current repair techniques, tissue engineering (TE) strategies have emerged as a promising alternative in this field. Three-dimensional culture techniques have gained attention in recent years, showing their ability to provide the most biomimetic environment for the cells under culture conditions, enabling the cells to fabricate natural, 3D functional microtissues (MTs). In this sense, the aim of this study was to generate, characterize and compare scaffold-free human hyaline and elastic cartilage-derived MTs (HC-MTs and EC-MTs, respectively) under expansion (EM) and chondrogenic media (CM).
View Article and Find Full Text PDFIn critical nerve gap repair, decellularized nerve allografts are considered a promising tissue engineering strategy that can provide superior regeneration results compared to nerve conduits. Decellularized nerves offer a well-conserved extracellular matrix component that has proven to play an important role in supporting axonal guiding and peripheral nerve regeneration. Up to now, the known decellularized techniques are time and effort consuming.
View Article and Find Full Text PDFAcellular nerve allografts (ANGs) represent a promising alternative in nerve repair. Our aim is to improve the structural and biomechanical properties of biocompatible Sondell (SD) and Roosens (RS) based ANGs using genipin (GP) as a crosslinker agent ex vivo. The impact of two concentrations of GP (0.
View Article and Find Full Text PDFMaterials (Basel)
November 2020
There is an error in the title [...
View Article and Find Full Text PDFGeneration of biocompatible and biomimetic tissue-like biomaterials is crucial to ensure the success of engineered substitutes in tissue repair. Natural biomaterials able to mimic the structure and composition of native extracellular matrices typically show better results than synthetic biomaterials. The aim of this study was to perform an time-course biocompatibility analysis of fibrin-agarose tissue-like hydrogels at the histological, imagenological, hematological, and biochemical levels.
View Article and Find Full Text PDFNerve autograft is the gold standard technique to repair critical nerve defects, but efficient alternatives are needed. The present study evaluated the suitability of our novel Roosens-based (RSN) decellularized peripheral nerve allografts (DPNAs) in the repair of 10-mm sciatic nerve defect in rats at the functional and histological levels after 12 weeks. These DPNAs were compared with the autograft technique (AUTO) and Sondell (SD) or Hudson (HD) based DPNAs.
View Article and Find Full Text PDFMaterials (Basel)
April 2020
Recent advances in tissue engineering offer innovative clinical alternatives in dentistry and regenerative medicine. Tissue engineering combines human cells with compatible biomaterials to induce tissue regeneration. Shortening the fabrication time of biomaterials used in tissue engineering will contribute to treatment improvement, and biomaterial functionalization can be exploited to enhance scaffold properties.
View Article and Find Full Text PDFNumber of publications has been widely used as a measure of research output, especially academic and university research. Number of publications in tissue engineering (TE) has increased year by year since early 1990s. However, after an exponential growth phase, recently publications increase at lower rates, suggesting a consolidation process in which reviews become a relevant and high-evidence document type.
View Article and Find Full Text PDF