ACS Appl Polym Mater
November 2024
This study investigates the potential of thermoresponsive hydrogels as innovative substrates for future in vitro diagnostic (IVD) applications using AVAC technology, developed and patented by the Mecwins biomedical company. In order to convert the hydrogel in a substrate compatible with AVAC technology, the following prerequisites were established: (1) the hydrogel layer needs to be permeable to gold nanoparticles (AuNPs), and (2) the optical properties of the hydrogel should not interfere with the detection of AuNPs with AVAC technology. These two key aspects are evaluated in this work.
View Article and Find Full Text PDFIn the rapidly emerging field of biomedical applications, multifunctional nanoparticles, especially those containing magnetic and plasmonic components, have gained significant attention due to their combined properties. These hybrid systems, often composed of iron oxide and gold, provide both magnetic and optical functionalities and offer promising avenues for applications in multimodal bioimaging, hyperthermal therapies, and magnetically driven selective delivery. This paper focuses on the implementation of advanced characterization methods, comparing statistical analyses of individual multifunctional particle properties with macroscopic properties as a way of fine-tuning synthetic methodologies for their fabrication methods.
View Article and Find Full Text PDFPlasmonic nanoparticles have a wide range of applications in science and industry. Despite the numerous synthesis methods reported in the literature over the last decades, achieving precise control over the size and shape of large nanoparticle populations remains a challenge. Since variations in size and shape significantly affect the plasmonic properties of nanoparticles, accurate metrological techniques to characterize their morphological features are essential.
View Article and Find Full Text PDFPlasmonic nanoparticles are widely used in multiple scientific and industrial applications. Although many synthesis methods have been reported in the literature throughout the last decade, controlling the size and shape of large populations still remains as a challenge. As size and shape variations have a strong impact in their plasmonic properties, the need to have metrological techniques to accurately characterize their morphological features is peremptory.
View Article and Find Full Text PDFThe use of broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) has been shown to be a promising therapeutic modality in the prevention of HIV infection. Understanding the b12-gp120 binding mechanism under physiological conditions may assist the development of more broadly effective antibodies. In this work, the main conformations and interactions between the receptor-binding domain (RBD) of spike glycoprotein gp120 of HIV-1 and the IgG1-b12 mAb are studied.
View Article and Find Full Text PDFA key factor for improving the sensitivity and performance of immunosensors based on mechanical-plasmonic methods is the orientation of the antibody proteins immobilized on the inorganic surface. Although experimental techniques fail to determine surface phenomena at the molecular level, modern simulations open the possibility for improving our understanding of protein-surface interactions. In this work, replica exchange molecular dynamics (REMD) simulations have been used to model the IgG1 protein tethered onto the amorphous silica surface by considering a united-atom model and a relatively large system (2500 nm surface).
View Article and Find Full Text PDFHypervalent tellurium compounds have a particular reactivity towards thiol compounds which are related to their biological properties. In this work, this property was assembled to tellurium-functionalized surfaces. These compounds were used as linkers in the immobilization process of thiolated biomolecules (such as DNA) on microcantilever surfaces.
View Article and Find Full Text PDFThere is a need for noninvasive techniques for simultaneous imaging of the stress and vibration mode shapes of nanomechanical systems in the fields of scanning probe microscopy, nanomechanical biological and chemical sensors and the semiconductor industry. Here we show a novel technique that combines a scanning laser, the beam deflection method and digital multifrequency excitation and analysis for simultaneous imaging of the static out-of-plane displacement and the shape of five vibration modes of nanomechanical systems. The out-of-plane resolution is at least 100 pm Hz⁻¹/² and the lateral resolution, which is determined by the laser spot size, is 1-1.
View Article and Find Full Text PDF