Actin dynamics control early T-cell receptor (TCR) signalling during T-cell activation. However, the precise regulation of initial actin rearrangements is not completely understood. Here, we have investigated the regulatory role of the phosphatase Slingshot-1 (SSH1) in this process.
View Article and Find Full Text PDFMultiple myeloma is the second most common hematological malignancy in adults and remains an incurable disease. B cell maturation antigen (BCMA)-directed immunotherapy, including T cells bearing chimeric antigen receptors (CARs) and systemically injected bispecific T cell engagers (TCEs), has shown remarkable clinical activity, and several products have received market approval. However, despite promising results, most patients eventually become refractory and relapse, highlighting the need for alternative strategies.
View Article and Find Full Text PDFT cell-redirecting strategies have emerged as effective cancer immunotherapy approaches. Bispecific antibodies (bsAbs) are designed to specifically recruit T cells to the tumor microenvironment and induce the assembly of the immunological synapse (IS) between T cells and cancer cells or antigen-presenting cells. The way that the quality of the IS might predict the effectiveness of T cell-redirecting strategies, including those mediated by bsAbs or by chimeric antigen receptors (CAR)-T cells, is currently under discussion.
View Article and Find Full Text PDFChimeric antigen receptor (CAR)-modified T cells have revolutionized the treatment of CD19-positive hematologic malignancies. Although anti-CD19 CAR-engineered autologous T cells can induce remission in patients with B-cell acute lymphoblastic leukemia, a large subset relapse, most of them with CD19-positive disease. Therefore, new therapeutic strategies are clearly needed.
View Article and Find Full Text PDFCancer immunotherapy strategies based on the endogenous secretion of T cell-redirecting bispecific antibodies by engineered T lymphocytes (STAb-T) are emerging as alternative or complementary approaches to those based on chimeric antigen receptors (CAR-T). The antitumor efficacy of bispecific anti-CD19 × anti-CD3 (CD19×CD3) T cell engager (BiTE)-secreting STAb-T cells has been demonstrated in several mouse models of B-cell acute leukemia. Here, we have investigated the spatial topology and downstream signaling of the artificial immunological synapses (IS) that are formed by CAR-T or STAb-T cells.
View Article and Find Full Text PDFRetargeting of T lymphocytes toward cancer cells by bispecific antibodies has demonstrated its therapeutic potential, with one such antibody approved for the treatment of acute lymphoblastic leukemia (blinatumomab) and several other in clinical trials. However, improvement of their efficacy and selectivity for solid tumors is still required. Here, we describe a novel tandem T-cell recruiting trispecific antibody for the treatment of colorectal cancer (CRC).
View Article and Find Full Text PDFIt has been proposed that the accumulation of farnesylated phosphatase of regenerating liver-1 (PRL-1) at the plasma membrane is mediated by static electrostatic interactions of a polybasic region with acidic membrane lipids and assisted by oligomerization. Nonetheless, localization at early and recycling endosomes suggests that the recycling compartment might also contribute to its plasma membrane accumulation. Here, we investigated in live cells the dynamics of PRL-1 fused to the green fluorescent protein (GFP-PRL-1).
View Article and Find Full Text PDFWe have previously shown the delivery of phosphatase of regenerating liver-1 (PRL-1) to the immunological synapse (IS) and proposed a regulatory role of the catalytic activity of PRLs (PRL-1, PRL-2 and PRL-3) in antigen-induced IL-2 production. Nonetheless, the expression in T cells and delivery to the IS of the highly homologous PRL-3, as well as the role of the catalytic activity of PRLs in antigen-induced early signaling, has not been investigated. Here, the expression of PRL-3 protein was detected in primary CD4 T cells and in the CD4 T cell line Jurkat (JK), in which an overexpressed GFP-PRL-3 fluorescent fusion protein trafficked through the endosomal recycling compartment and co-localized with PLCγ1 signaling sites at the IS.
View Article and Find Full Text PDFT cell activation and effector function is mediated by the formation of a long-lasting interaction established between T cells and antigen-presenting cells (APCs) called immunological synapse (IS). During T cell activation, different signaling molecules as well as the cytoskeleton and the endosomal compartment are polarized to the IS. This molecular dynamics is tightly regulated by phosphorylation networks, which are controlled by protein tyrosine phosphatases (PTPs).
View Article and Find Full Text PDFThe regulatory role of most dual specific phosphatases during T cell activation remains unknown. Here, we have studied the expression and function of phosphatases of regenerating liver (PRLs: PRL-1, PRL-2, and PRL-3) during T cell activation, as well as, the dynamic delivery of PRL-1 to the Immunological Synapse (IS). We found that T cell activation downregulates the expression of PRL-2, resulting in an increased PRL-1/PRL-2 ratio.
View Article and Find Full Text PDF