Leptosphaeria maculans is the causal agent of blackleg disease in Brassica napus, leading to substantial yield losses. Sirodesmin PL, the principal toxin produced by L. maculans, has been implicated in the infective process in plants.
View Article and Find Full Text PDFThe complexes involving MYBPA2, TT2b, and TT8 proteins are the critical regulators of ANR and LAR genes to promote the biosynthesis of proanthocyanidins in the leaves of Lotus spp. The environmental impact and health of ruminants fed with forage legumes depend on the herbage's concentration and structure of proanthocyanidins (PAs). Unfortunately, the primary forage legumes (alfalfa and clover) do not contain substantial levels of PAs.
View Article and Find Full Text PDFBacterial phytopathogens living on the surface or within plant tissues may experience oxidative stress because of the triggered plant defense responses. Although it has been suggested that polyamines can defend bacteria from this stress, the mechanism behind this action is not entirely understood. In this study, we investigated the effects of oxidative stress on the polyamine homeostasis of the plant pathogen Pseudomonas syringae and the functions of these compounds in bacterial stress tolerance.
View Article and Find Full Text PDFTo succeed in plant invasion, phytopathogenic bacteria rely on virulence mechanisms to subvert plant immunity and create favorable conditions for growth. This process requires a precise regulation in the production of important proteins and metabolites. Among them, the family of compounds known as polyamines have attracted considerable attention as they are involved in important cellular processes, but it is not known yet how phytopathogenic bacteria regulate polyamine homeostasis in the plant environment.
View Article and Find Full Text PDFAlthough legumes are of primary economic importance for human and livestock consumption, the information regarding signalling networks during plant stress response in this group is very scarce. is a major experimental model within the Leguminosae family, whereas and are frequent components of natural and agricultural ecosystems worldwide. These species display differences in their perception and response to diverse stresses, even at the genotype level, whereby they have been used in many studies aimed at achieving a better understanding of the plant stress-response mechanisms.
View Article and Find Full Text PDFRoot fungal endophytes are essential mediators of plant nutrition under mild stress conditions. However, variations in the rhizosphere environment, such as nutrient depletion, could result in a stressful situation for both partners, shifting mutualistic to nonconvenient interactions. Mycorrhizal fungi and dark septate endophytes (DSEs) have demonstrated their ability to facilitate phosphate (Pi) acquisition.
View Article and Find Full Text PDFThe genome of a novel rhabdovirus was detected in yerba mate (Ilex paraguariensis St. Hil.).
View Article and Find Full Text PDFPolyamines (PAs) are natural aliphatic amines involved in many physiological processes in almost all living organisms, including responses to abiotic stresses and microbial interactions. On other hand, the family constitutes an economically and ecologically key botanical group for humans, being also regarded as the most important protein source for livestock. This review presents the profuse evidence that relates changes in PAs levels during responses to biotic and abiotic stresses in model and cultivable species within and examines the unreviewed information regarding their potential roles in the functioning of symbiotic interactions with nitrogen-fixing bacteria and arbuscular mycorrhizae in this family.
View Article and Find Full Text PDFThe interactions established between plants and endophytic fungi span a continuum from beneficial to pathogenic associations. The aim of this work was to isolate potentially beneficial fungal endophytes in the legume Lotus tenuis and explore the mechanisms underlying their effects. One of the nine fungal strains isolated was identified as Fusarium solani and shows the highest phosphate-solubilisation activity, and also grows endophytically in roots of L.
View Article and Find Full Text PDFForage legumes are an important livestock nutritional resource, which includes essential metals, such as copper. Particularly, the high prevalence of hypocuprosis causes important economic losses to Argentinian cattle agrosystems. Copper deficiency in cattle is partially due to its low content in forage produced by natural grassland, and is exacerbated by flooding conditions.
View Article and Find Full Text PDFSalinity is one of the most frequent limiting conditions in pasture production for grazing livestock. Legumes, such as Lotus spp. with high forage quality and capable of adapting to different environments, improves pasture performance in restrictive areas.
View Article and Find Full Text PDFAbscisic acid is involved in the drought response of Ilex paraguariensis. Acclimation includes root growth stimulation, stomatal closure, osmotic adjustment, photoprotection, and regulation of nonstructural carbohydrates and amino acid metabolisms. Ilex paraguariensis (yerba mate) is cultivated in the subtropical region of South America, where the occurrence of drought episodes limit yield.
View Article and Find Full Text PDFLow temperature is one of the most important factors affecting plant growth, it causes an stress that directly alters the photosynthetic process and leads to photoinhibition when severe enough. In order to address the photosynthetic acclimation response of Lotus japonicus to cold stress, two ecotypes with contrasting tolerance (MG-1 and MG-20) were studied. Their chloroplast responses were addressed after 7 days under low temperature through different strategies.
View Article and Find Full Text PDFThe polyamines putrescine, spermidine and spermine participate in a variety of cellular processes in all organisms. Many studies have shown that these polycations are important for plant immunity, as well as for the virulence of diverse fungal phytopathogens. However, the polyamines' roles in the pathogenesis of phytopathogenic bacteria have not been thoroughly elucidated to date.
View Article and Find Full Text PDFEndophytic bacteria colonize inner plant tissues and thrive at the apoplast, which is considered its main reservoir. Because this niche is the place where the main molecular events take place between beneficial and pathogenic microorganisms, the aim of this work was to characterize culturable endophytic bacteria from apoplastic fluids obtained from field-grown canola leaves and analyze their potential for biological control of diseases caused by Xanthomonas campestris, Sclerotinia sclerotiorum, and Leptosphaeria maculans. Dual-culture analysis indicated that three isolates (Apo8, Apo11, and Apo12) were able to inhibit the growth of all three phytopathogens.
View Article and Find Full Text PDFPlants respond to pathogen attack by modifying defense gene expression and inducing the production of myriad proteins and metabolites. Among these responses, polyamine (PA) levels suffer remarkable modifications. Evidences demonstrate that plants make use of the polyamine biosynthetic pathway and the oxidative catabolism of these compounds in order to mount adequate defenses against pathogens.
View Article and Find Full Text PDFPlants have developed different strategies to cope with the environmental stresses they face during their life cycle. The responses triggered under these conditions are usually characterized by significant modifications in the metabolism of polyamines such as putrescine, spermidine, and spermine. Several works have demonstrated that a fine-tuned regulation of the enzymes involved in the biosynthesis and catabolism of polyamines leads to the increment in the concentration of these compounds.
View Article and Find Full Text PDFBy exploiting interspecific hybrids and their progeny, we identified key regulatory and transporter genes intimately related to proanthocyanidin biosynthesis in leaves of Lotus spp. Proanthocyanidins (PAs), known as condensed tannins, are polymeric flavonoids enriching forage legumes of key nutritional value to prevent bloating in ruminant animals. Unfortunately, major forage legumes such as alfalfa and clovers lack PAs in edible tissues.
View Article and Find Full Text PDFJ Plant Physiol
November 2016
The response of fifty-four Lotus japonicus ecotypes, and of six selected ecotypes was investigated under alkaline conditions. Sensitive, but not tolerant ecotypes, showed interveinal chlorosis under all alkalinity conditions and high mortality under extreme alkalinity. Interveinal chlorosis was associated with Fe deficiency, as a reduced Fe shoot content was observed in all sensitive ecotypes.
View Article and Find Full Text PDFLotus species are important forage legumes due to their high nutritional value and adaptability to marginal conditions. However, the dry matter production and regrowth rate of cultivable Lotus spp. is drastically reduced during colder seasons.
View Article and Find Full Text PDFMembers of the Lotus genus are important as agricultural forage sources under marginal environmental conditions given their high nutritional value and tolerance of various abiotic stresses. However, their dry matter production is drastically reduced in cooler seasons, while their response to such conditions is not well studied. This paper analyzes cold acclimation of the genus by studying Lotus japonicus over a stress period of 24 h.
View Article and Find Full Text PDFInoculation assays with Pantoea eucalypti M91 were performed on Lotus japonicus ecotype Gifu. Under alkaline conditions, this ecotype is characterized by the development of interveinal chlorosis of the apical leaves due to low mobilization of Fe(2+). Inoculation with P.
View Article and Find Full Text PDFSoil alkalinity is one of the most serious agricultural problems limiting crop yields. The legume Lotus tenuis is an important forage acknowledged by its ability to naturally grow in alkaline soils. To gain insight into the molecular responses that are activated by alkalinity in L.
View Article and Find Full Text PDF