Virtual rehabilitation has been used during decades to provide a more personalized, controlled, and enjoyable experience on upper-limb motor rehabilitation. Since novel virtual reality (VR) technologies are now accessible and highly immersive, the challenge for a wide dissemination of virtual rehabilitation in clinical scenarios has shifted from the hardware robustness to the software intelligence. A sophisticated technique that provides physiological intelligence to novel human-computer interaction (HCI) applications is biocybernetic adaptation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2016
The application of rehabilitation programs based on videogames with brain-computer interfaces (BCI) allows to provide feedback to the user with the expectation of stimulate the brain plasticity that will restore the motor control. The use of specific mental strategies such as Motor Imagery (MI) in neuroscientific experiments with BCI systems often requires the acquisition of sophisticated interfaces and specialized software for execution, which usually have a high implementation costs. We present a combination of low-cost hardware and open-source software for the implementation of videogame based on virtual reality with MI and its potential use as neurotherapy for stroke patients.
View Article and Find Full Text PDF