Optical diffraction tomography (ODT) enables the label-free volumetric imaging of biological specimens by mapping their three-dimensional refractive index (RI) distribution. However, the depth of imaging achievable is restricted due to spatially inhomogeneous RI distributions that induce multiple scattering. In this study, we introduce a novel ODT technique named bidirectional in-silico clearing RI tomography.
View Article and Find Full Text PDFThe vital role of bile canaliculus (BC) in liver function is closely related to its morphology. Electron microscopy has contributed to understanding BC morphology; however, its invasiveness limits its use in living specimens. Here, we report non-invasive characterization of BC formation using refractive index (RI) tomography.
View Article and Find Full Text PDFRefractive index (RI) is considered to be a fundamental physical and biophysical parameter in biological imaging, as it governs light-matter interactions and light propagation while reflecting cellular properties. RI tomography enables volumetric visualization of RI distribution, allowing biologically relevant analysis of a sample. However, multiple scattering (MS) and sample-induced aberration (SIA) caused by the inhomogeneity in RI distribution of a thick sample make its visualization challenging.
View Article and Find Full Text PDFRefractive index (RI) tomography is a quantitative tomographic technique used to visualize the intrinsic contrast of unlabeled biological samples. Conventional RI reconstruction algorithms are based on weak-scattering approximation, such as the Born or Rytov approximation. Although these linear algorithms are computationally efficient, they are invalid when the fields are strongly distorted by multiple scattering (MS) of specimens.
View Article and Find Full Text PDFVarious studies have been conducted to obtain quantitative phase information based on differential interference contrast (DIC) microscopy. As one such attempt, we propose in this study a single-shot quantitative phase imaging (QPI) method by combining two developments. First, an add-on optical system to a commercialized DIC microscope was developed to perform quantitative phase gradient imaging (QPGI) with single image acquisition using a polarization camera.
View Article and Find Full Text PDFWe propose a line-field quantitative phase-imaging flow cytometer for analyzing large populations of label-free cells. Hydrodynamical focusing brings cells into the focus plane of an optical system while diluting the cell suspension, resulting in decreased throughput rate. To overcome the trade-off between throughput rate and in-focus imaging, our cytometer involves digitally extending the depth-of-focus on loosely hydrodynamically focusing cell suspensions.
View Article and Find Full Text PDF