Local translation in growth cones plays a critical role in responses to extracellular stimuli, such as axon guidance cues. We previously showed that brain-derived neurotrophic factor activates translation and enhances novel protein synthesis through the activation of mammalian target of rapamycin complex 1 signaling in growth cones of dorsal root ganglion neurons. In this study, we focused on 40S ribosomal protein S6 (RPS6), 60S ribosomal protein P0/1/2 (RPP0/1/2), and actin filaments to determine how localization of ribosomal proteins changes with overall protein synthesis induced by neurotrophins.
View Article and Find Full Text PDFAnterior talofibular ligament (ATFL) injuries are the most common cause of ankle sprains. To ensure anatomically accurate surgery and ultrasound imaging of the ATFL, anatomical knowledge of the bony landmarks around the ATFL attachment to the distal fibula is required. The purpose of the present study was to anatomically investigate the ATFL attachment to the fibula with respect to bone morphology and attachment structures.
View Article and Find Full Text PDFAntibodies specific for cardiolipin (CL)-β-glycoprotein I (βGPI) are known to induce tissue factor (TF) expression by monocytes and endothelial cells which leads to a prothrombotic state in antiphospholipid syndrome (APS), but the mechanism is not fully elucidated. Previously, we reported that the mouse monoclonal anti-CL-βGPI antibody WB-6 cross-reacts with DNA, enters monocytes binding to cell surface DNA, and induces TF expression. The current study aimed to identify the intracellular signaling pathways involved in this process.
View Article and Find Full Text PDFTendons and ligaments are pivotal connective tissues that tightly connect muscle and bone. In this study, we developed a novel approach to generate tendon/ligament-like tissues with a hierarchical structure, by introducing the tendon/ligament-specific transcription factor Mohawk (MKX) into the mesenchymal stem cell (MSC) line C3H10T1/2 cells, and by applying an improved three-dimensional (3D) cyclic mechanical stretch culture system. In our developed protocol, a combination of stable expression and cyclic mechanical stretch synergistically affects the structural tendon/ligament-like tissue generation and tendon related gene expression.
View Article and Find Full Text PDFThe local translation, which is regulated by extracellular stimuli such as guidance molecules, in growth cones of neurons provides a molecular mechanism for axonal development. In this study, we performed immunocytochemistry together with atomic force microscopy to investigate the localization of ribosomal proteins in the growth cones of rat dorsal root ganglion (DRG) neurons. The immunoreactivity of ribosomal protein P0/1/2 and S6, and novel protein synthesis were observed in the central, sterically bulky region of growth cones.
View Article and Find Full Text PDFRNA may be released from vascular cells including endothelial cells in the event of injury and in vascular disease. Extracellular RNAs have been recognized as novel procoagulant and permeability-increasing factors. Extracellular RNA may function as inflammatory host alarm signals that serve to amplify the defense mechanism, but it may provide important links to thrombus formation.
View Article and Find Full Text PDFMed Mol Morphol
December 2014
The present study examined the three-dimensional process of collagen fibril formation in the human osteosarcoma cell line NOS-1 by conventional scanning electron microscopy (SEM) and atomic force microscopy (AFM). SEM images showed collagen fibril formation on the bottom of culture dishes after 1 week of culture. The collagen fibrils had diameters of 30-100 nm.
View Article and Find Full Text PDFThe combined use of fluorescence microscopy with atomic force microscopy (AFM) has been introduced to analyze the replication-banding patterns of human chromosomes. Human lymphocytes synchronized with excess thymidine are treated with 5-ethynyl-2'-deoxyuridine (EdU) during the late S phase. EdU-labeled DNA is detected in metaphase chromosomes using Alexa Fluor 488(®) azide, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU.
View Article and Find Full Text PDFActa Histochem Cytochem
October 2011
A novel technique using the incorporation of 5-ethynyl-2'-deoxyuridine (EdU) into replicating DNA is described for the analysis of replicating banding patterns of human metaphase chromosomes. Human lymphocytes were synchronized with excess thymidine and treated with EdU during the late S phase of the cell cycle. The incorporated EdU was then detected in metaphase chromosomes using Alexa Fluor® 488 azides, through the 1,3-dipolar cycloaddition reaction of organic azides with the terminal acetylene group of EdU.
View Article and Find Full Text PDFMethods Mol Biol
October 2011
Methods for atomic force microscopy (AFM) imaging of human metaphase chromosomes were -introduced in the present study. Chromosomes from the lymphocytes were fixed and prepared onto glass slides as the chromosome spread, and observed in phosphate-buffered saline by dynamic mode AFM. On the contrary, chromosomes from the human cell line BALL-1 were isolated using the hexylene glycol method, absorbed onto a silane-coated glass slide, and observed in a hexylene glycol buffer solution by dynamic mode AFM.
View Article and Find Full Text PDFBiochem Biophys Res Commun
September 2010
The morphology of chromosomes (certain rod-shaped structures) is highly reproducible despite the high condensation of chromatin fibers (∼1 mm) into chromosomes (∼1 μm). However, the mechanism underlying the condensation of chromatin fibers into chromosomes is unclear. We assume that investigation of the internal structure of chromosomes will aid in elucidating the condensation process.
View Article and Find Full Text PDFThe relationship between the higher-order structure of human metaphase chromosomes and the distribution of topoisomerase IIα was analyzed by a comparison of atomic force microscope (AFM) and fluorescence microscope images of the same chromosome. AFM imaging of chromosomes in liquid revealed the presence of alternating ridges and grooves on the surfaces of the sister chromatids. In contrast, the fluorescence image of the chromosomes stained with the anti-topoisomerase IIα antibody showed that the fluorescence intensity of topoisomerase IIα was not uniform and that there were alternating strong and weak spots along the chromosome axes.
View Article and Find Full Text PDFThe purpose of this study was to obtain three-dimensional images of wet chromosomes by atomic force microscopy (AFM) in liquid conditions. Human metaphase chromosomes-obtained either by chromosome spreads or by an isolation technique-were observed in a dynamic mode by AFM in a buffer solution. Under suitable operating conditions with a soft triangular cantilever (with the spring constant of 0.
View Article and Find Full Text PDFThe present study introduces the principle of atomic force microscopy (AFM) and reviews our results of human metaphase chromosomes obtained by AFM. AFM imaging of the chromosomes revealed that the chromatid arm was not uniform in structure but had ridges and grooves along its length, which was most prominent in the late metaphase. The arrangement of these ridges and grooves was roughly symmetrical with the counterpart of the paired sister chromatids.
View Article and Find Full Text PDFArch Histol Cytol
March 2006
The present study introduces a method for obtaining three-dimensional images of native (i.e., unfixed) chromosomes by atomic force microscopy (AFM) in a liquid.
View Article and Find Full Text PDFHuman metaphase chromosomes, in which 5-bromo-deoxyuridine (BrdU) had been incorporated into the DNA, were treated with the fluorescent plus Giemsa (FPG) method. Use of this method distinctly stained one of the paired sister chromatids with the Giemsa solution due to the difference in content of BrdU in the two chromatids. These chromosomes with their differential staining of sister chromatids were observed by atomic force microscopy (AFM).
View Article and Find Full Text PDFThe present study was performed to investigate morphologically the process of neutrophil extravasation induced by the synthetic bacterial peptide N-formylmethionyl-leucyl-phenylalanine (fMLP) in venules of the rat mesentery by the combined use of intravital microscopy and transmission electron microscopy (TEM). Special attention was given to the interaction of the neutrophils with the endothelial cells and endothelial basal lamina. By intravital microscopy, the rolling and adhesion of leukocytes were observed within 3 min in preparations activated by fMLP.
View Article and Find Full Text PDFStudies on the structure of the human chromosome were reviewed from the histological perspective and discussed in connection with our recent findings obtained mainly by atomic force microscopy (AFM). In this paper, we introduce several hitherto known models of the high-order structure of the metaphase chromosome and discuss the actual structure of chromosomes in relation to such structures as spiral chromatids, chromosome bands, and chromosome scaffolds. In chromosomes treated with Ohnuki's hypotonic solution, the chromosome arms were elongated and showed a characteristic spiral pattern of chromatid fibers.
View Article and Find Full Text PDFLatency-associated nuclear antigen 1 (LANA1) of Kaposi's sarcoma-associated herpesvirus (KSHV; human herpesvirus 8) persistently maintains a plasmid containing the KSHV latent origin of replication (oriP) as a closed circular episome in dividing cells. In this study, we investigated the involvement of chromosome binding activity of LANA1 in persistent episome maintenance. Deletion of the N-terminal 22 amino acids of LANA1 (DeltaN-LANA) inhibited the interaction with mitotic chromosomes in a human cell line, and the mutant concomitantly lost activity for the long-term episome maintenance of a plasmid containing viral oriP in a human B-cell line.
View Article and Find Full Text PDF