The findings of this study suggest that the phosphoinositide phosphatase Sac3 maintains the protein level of scavenger receptor A (SR-A) and regulates foam cell formation. RAW264.7 macrophages were transfected with short hairpin RNAs that target Sac3.
View Article and Find Full Text PDFThe relative abundance of phosphoinositide (PI) species on the phagosome membrane fluctuates over the course of phagocytosis. PtdIns(3,4,5)P and PtdIns(3,4)P rapidly increase in the forming of the phagocytic cup, following which they disappear after sealing of the cup. In the present study, we monitored the clearance of these PI species using the enhanced green fluorescent protein-fused pleckstrin homology domain of Akt, a fluorescence probe that binds both PtdIns(3,4,5)P and PtdIns(3,4)P in Raw 264.
View Article and Find Full Text PDFPhosphatidylinositol 3-kinase (PI3K)/Akt signaling has been implicated in the anti-inflammatory response in a mouse model of endotoxemia and sepsis. The present study focused on the role of inositol polyphosphate-4-phosphatase type I (Inpp4a), which dephosphorylates PtdIns(3,4)P2 to PtdIns(3)P, in bacterial infections. We prepared myeloid cell-specific Inpp4a-conditional knockout mice.
View Article and Find Full Text PDFPhagocytosis is a highly conserved process whereby phagocytic cells engulf pathogens and apoptotic bodies. The present study focused on the role of inositol polyphosphate-4-phosphatase type I (Inpp4a) in phagocytosis. Raw264.
View Article and Find Full Text PDFIn this study, we present findings that suggest that PI3K-C2α, a member of the class II phosphoinositide 3-kinase (PI3K) subfamily, regulates the process of FcεRI-triggered degranulation. RBL-2H3 cells were transfected with shRNA targeting PI3K-C2α. The knockdown impaired the FcεRI-induced release of a lysosome enzyme, β-hexosaminidase, without affecting the intracellular Ca2+ mobilization.
View Article and Find Full Text PDFPhosphoinositide 5'-phosphatases have been implicated in the regulation of phagocytosis. However, their precise roles in the phagocytic process are poorly understood. We prepared RAW264.
View Article and Find Full Text PDFTLR9 is a receptor for oligodeoxynucleotides that contain unmethylated CpG motifs (CpG). Because TLR9 resides in the endoplasmic reticulum during the quiescence state, CpG binding to TLR9 requires membrane trafficking, which includes the maturation of the CpG-containing endosome. In the present study, we examined the role of PIKfyve, a phosphatidylinositol 3-phosphate 5-kinase, in the regulation of TLR9 signaling.
View Article and Find Full Text PDFStudies with knockout mice have indicated that the only isoform of phosphoinositide 3-kinase (PI3K) functioning in the oxidative burst of mouse neutrophils in response to heterotrimeric guanine nucleotide-binding protein-coupled receptor (GPCR) agonists is a class-IB PI3K, p110γ. In the present study, we observed that the cells from p110γ(-/-) mice gain a response to N-formyl-Met-Leu-Phe (fMLP) after priming with cytochalasin E. Even the unprimed cells, which show no response to fMLP, produce a significant amount of superoxide, when an effective agonist of the mouse-type fMLP receptors, Trp-Lys-Tyr-Met-Val-D-Met, is used to stimulate the cells.
View Article and Find Full Text PDFPtdIns(3)P (phosphatidylinositol 3-phosphate) is a signaling molecule important for phagosome maturation. The major role of Vps34 in production of phagosomal PtdIns(3)P has been indicated. However, the fate of the newly generated PtdIns(3)P has not been well described.
View Article and Find Full Text PDFSynthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ(-/-)).
View Article and Find Full Text PDFThe complement system is a classic central player in innate immunity. Most pathogens activate both complement and the toll-like receptor (TLR) pathway. Therefore, to provide a more comprehensive understanding of innate immunity, it is important to understand the crosstalk between these two systems.
View Article and Find Full Text PDFWe examined the effects of exogenous melatonin and the time of its administration on core body temperature (CBT) and heart rate (HR) in cynomolgus monkeys. Doses of melatonin at 0.2, 2, 20 and 200 mg/kg were administered by oral gavage once daily at different times.
View Article and Find Full Text PDFPI3K (phosphoinositide 3-kinase) alpha has been implicated in phagocytosis and fluid-phase pinocytosis in macrophages. The subtype-specific role of PI3K in these processes is poorly understood. To elucidate this issue, we made Raw 264.
View Article and Find Full Text PDFOral administration of hot-water extract of Spirulina, cyanobacterium Spirulina platensis, leads to augmentation of NK cytotoxicity in humans. Here, we applied to syngeneic tumor-implant mice (C57BL/6 versus B16 melanoma) Spirulina to elucidate the mechanism of raising antitumor NK activation. A B16D8 subcell line barely expressed MHC class I but about 50% expressed Rae-1, a ligand for NK activation receptor NKG2D.
View Article and Find Full Text PDFStimulation of macrophages by various ligands results in the activation of both phosphoinositide 3-kinase (PI3K) and protein kinase C (PKC). Here, we showed that PKCdelta selectively inhibits class IA PI3K. Prior exposure of macrophages to a PKC activator, phorbol 12-myristate 13-acetate (PMA) inhibited the PI3K activation induced by the Fcgamma receptor (FcgammaR) ligation but not that induced by C5a.
View Article and Find Full Text PDFIt has been suggested that PI3K participates in TLR signaling. However, identifying specific roles for individual PI3K subtypes in signaling has remained elusive. In macrophages from the p110gamma(-/-) mouse, LPS-induced phosphorylation of Akt occurred normally despite the fact that the action of anaphylatoxin C5a was impaired markedly.
View Article and Find Full Text PDFThe activation of interleukin 1 receptor-associated kinase (IRAK)-1 is a key event in the transmission of signals from Toll-like receptors (TLRs). The catalytic activity of the protein kinase is not essential for its ability to activate nuclear factor (NF) kappaB, because transfection of a kinase-dead mutant of IRAK-1 (IRAK-1KD) is able to activate NF-kappaB in HEK293T cells. In the present study, we observed that the effect of IRAK-1KD was impaired by simultaneous expression of IRAK-4.
View Article and Find Full Text PDFRecent advances in our understanding of the molecular basis of mammalian host immune responses to microbial invasion suggest that the first line of defense against microbes is the recognition of pathogen-associated molecular patterns by Toll-like receptors (TLRs). Phosphoinositide 3-kinase (PI3K) is thought to participate in the TLR signaling pathway. The activation of PI3K is commonly observed after stimulation with various TLR ligands.
View Article and Find Full Text PDFRegulated intramembrane proteolysis of membrane proteins has been shown to play an important role in cell differentiation and in the pathogenesis of diseases. The aim of the present study was to identify novel peptides generated by intramembrane proteolysis. The peptides were identified in serum-free cultured (SFC) media from various cell lines by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF-MS).
View Article and Find Full Text PDFMenadione (vitamin K(3)) has been shown to activate Erk in several cell lines. This effect has been shown to be due to the activation of EGF receptors (EGFR) as a result of inhibition of some protein tyrosine phosphatases. In the present study, we examined the effects of menadione on Akt in Chinese hamster ovary cells.
View Article and Find Full Text PDFLipopolysaccharide (LPS), a major constituent of the outer membrane of gram-negative bacteria, consists of polysaccharides and a lipid structure named lipid A. Lipid A is a typical microbial pattern molecule that serves as a ligand for Toll-like receptor 4 (TLR4). TLR4 signals the presence of lipid A to recruit adaptor molecules and induces cytokines and type I interferon (IFN) by activating transcription factor, NF-kappaB or IRF-3.
View Article and Find Full Text PDFToll-like receptor (TLR) family members recognize specific molecular patterns within pathogens. Signaling through TLRs results in a proximal event that involves direct binding of adaptor proteins to the receptors. We observed that TIRAP/Mal, an adaptor protein for TLR2 and TLR4, binds protein kinase Cdelta (PKCdelta).
View Article and Find Full Text PDFThe 1,4-naphthoquinone derivative, shikonin, has been shown to increase glucose uptake by adipocytes and myocytes with minor effects on protein tyrosine phosphorylation in the cells (Biochem Biophys Res Commun 292:642-651, 2002). The present study was performed to examine the mechanism of this action of shikonin. Shikonin inhibited the phosphatidylinositol 3,4,5-triphosphate (PtdIns-3,4,5-P3) phosphatase activity of recombinant phosphatase and tensin homolog deleted on chromosome 10 (PTEN) with an IC50 value of 2.
View Article and Find Full Text PDFA number of previous studies have suggested the involvement of phosphoinositide 3-kinase (PI3K) in Toll-like receptor (TLR) signaling. However, there have also been a number of conflicting reports. The PI3K inhibitor wortmannin greatly enhanced TLR-mediated inducible nitric-oxide synthase (iNOS) expression and cytokine production in the mouse macrophage cell line Raw264.
View Article and Find Full Text PDFProinflammatory mediators such as cytokines and NO play pivotal roles in various inflammatory diseases. To combat inflammatory diseases successfully, regulation of proinflammatory mediator production would be a critical process. In the present study, we investigated the in vitro effects of ethyl (6R)-6-[N-(2-chloro-4-fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242), a novel small molecule cytokine production inhibitor, and its mechanism of action.
View Article and Find Full Text PDF