: The use of a focused ion beam to decompose a precursor gas and produce a metallic deposit is a widespread nanolithographic technique named focused ion beam induced deposition (FIBID). However, such an approach is unsuitable if the sample under study is sensitive to the somewhat aggressive exposure to the ion beam, which induces the effects of surface amorphization, local milling, and ion implantation, among others. An alternative strategy is that of focused electron beam induced deposition (FEBID), which makes use of a focused electron beam instead, and in general yields deposits with much lower metallic content than their FIBID counterparts.
View Article and Find Full Text PDFNanoSQUIDs are quantum sensors that excel in detecting a small change in magnetic flux with high sensitivity and high spatial resolution. Here, we employ resist-free direct-write Ga Focused Ion Beam Induced Deposition (FIBID) techniques to grow W-C nanoSQUIDs, and we investigate their electrical response to changes in the magnetic flux. Remarkably, FIBID allows the fast (3 min) growth of 700 nm × 300 nm nanoSQUIDs based on narrow nanobridges (50 nm wide) that act as Josephson junctions.
View Article and Find Full Text PDFSince its discovery in 1911, superconductivity has represented an equally inciting and fascinating field of study in several areas of physics and materials science, ranging from its most fundamental theoretical understanding, to its practical application in different areas of engineering. The fabrication of superconducting materials can be downsized to the nanoscale by means of : nanopatterning techniques that make use of a focused beam of ions or electrons to decompose a gaseous precursor in a single step. Overcoming the need to use a resist, these approaches allow for targeted, highly-flexible nanopatterning of nanostructures with lateral resolution in the range of 10 nm to 30 nm.
View Article and Find Full Text PDFThe critical current of a superconducting nanostructure can be suppressed by applying an electric field in its vicinity. This phenomenon is investigated throughout the fabrication and electrical characterization of superconducting tungsten-carbon (W-C) nanostructures grown by Ga[Formula: see text] focused ion beam induced deposition (FIBID). In a 45 nm-wide, 2.
View Article and Find Full Text PDFFocused ion beam induced deposition (FIBID) is a nanopatterning technique that uses a focused beam of charged ions to decompose a gaseous precursor. So far, the flexible patterning capabilities of FIBID have been widely exploited in the fabrication of superconducting nanostructures, using the W(CO) precursor mostly in combination with a focused beam of Ga ions. Here, the fabrication and characterization of superconducting in-plane tungsten-carbon (W-C) nanostructures by He FIBID of the W(CO) precursor is reported.
View Article and Find Full Text PDFIn this contribution, we compare the performance of Focused Electron Beam-induced Deposition (FEBID) and Focused Ion Beam-induced Deposition (FIBID) at room temperature and under cryogenic conditions (the prefix "Cryo" is used here for cryogenic). Under cryogenic conditions, the precursor material condensates on the substrate, forming a layer that is several nm thick. Its subsequent exposure to a focused electron or ion beam and posterior heating to 50 °C reveals the deposit.
View Article and Find Full Text PDFAn ultra-fast method to directly grow metallic micro- and nano-structures is introduced. It relies on a Focused Ion Beam (FIB) and a condensed layer of suitable precursor material formed on the substrate under cryogenic conditions. The technique implies cooling the substrate below the condensation temperature of the gaseous precursor material, subsequently irradiating with ions according to the wanted pattern, and posteriorly heating the substrate above the condensation temperature.
View Article and Find Full Text PDFUnder high-enough values of perpendicularly-applied magnetic field and current, a type-II superconductor presents a finite resistance caused by the vortex motion driven by the Lorentz force. To recover the dissipation-free conduction state, strategies for minimizing vortex motion have been intensely studied in the last decades. However, the non-local vortex motion, arising in areas depleted of current, has been scarcely investigated despite its potential application for logic devices.
View Article and Find Full Text PDFTo ensure the microbiological quality, consumer safety and organoleptic properties of cosmetic products, manufacturers need to comply with defined standards using several preservatives and disinfectants. A drawback regarding the use of these preservatives is the possibility of generating cross-insusceptibility to other disinfectants or preservatives, as well as cross resistance to antibiotics. Therefore, the objective of this study was to understand the adaptive mechanisms of Enterobacter gergoviae, Pseudomonas putida and Burkholderia cepacia that are involved in recurrent contamination in cosmetic products containing preservatives.
View Article and Find Full Text PDFWe studied the presence of mutations in the whole katG gene and specific regions of the oxyR-ahpC and mabA-inhA regulatory region in 61 Mycobacterium tuberculosis isoniazid-resistant isolates. An 81-bp region of the rpoB gene was also sequenced in 17 rifampin-resistant strains. Alterations in the katG gene were detected in 55% of the isolates.
View Article and Find Full Text PDFBackground: This study evaluates a method based on real-time PCR for direct detection in clinical samples of the common mutations responsible for isoniazid and rifampicin resistance of Mycobacterium tuberculosis.
Methods: Six pairs of fluorogenic 5' exonuclease probes (Taqman), mutated and wild-type, were designed for six targets: codon 315 of katG, substitution C209T in the regulatory region of inhA, and codons 513, 516, 526 and 531 of rpoB.
Results: A total of 98 clinical samples harbouring resistant bacilli from 55 patients and 126 samples harbouring susceptible bacilli from 126 patients were processed.
A new mycobacteriophage-based technique (PhageTek MB) was compared with standard culture and staining techniques for diagnosis of pulmonary tuberculosis. A total of 2,048 respiratory specimens from 1,466 patients collected from February 2000 to March 2001 were studied by both (i) conventional methods (direct microscopic examination [auramine-rhodamine fluorochrome], and culture in BacT/ALERT 3D and solid media) and (ii) the PhageTek MB assay. This phenotypic test utilizes specific mycobacteriophages to detect the presence of live Mycobacterium tuberculosis complex organisms within a decontaminated clinical sample.
View Article and Find Full Text PDFPenicillin resistance in Neisseria spp is thought to be generated by the interspecies transfer of genetic material from naturally penicillin-resistant, commensal species. We examined a series of successive transformants with increasing levels of penicillin resistance, obtained by co-cultivation of Neisseria meningitidis derivatives with Neisseria polysaccharea. Our results suggest that, in addition to the well-known decrease in penicillin affinity of penicillin-binding protein-2 (PBP-2), decreased expression of the class 3 porin as well as decreased affinity of PBP-1 may contribute to higher level resistance of N.
View Article and Find Full Text PDFHorizontal gene transfer between commensal and pathogenic Neisseriae is the mechanism proposed to explain how pathogenic species acquire altered portions of the penA gene, which encodes penicillin binding protein 2. These changes resulted in a moderately penicillin-resistant phenotype in the meningococci, whose frequency of isolation in Spain increased at the end of the 1980s. Little has been published about the possibility of this gene transfer in nature or about its simulation in the laboratory.
View Article and Find Full Text PDFFimbriation, hemagglutination and adherence properties were studied in two strains of S. marcescens (ATCC 43820 and 43821) isolated from the urine of two hospitalized patients in two different hospitals. Studies were performed using electron microscopy (EM), fimbrial purification, recombinant DNA and hemagglutination techniques, hydrophobicity and tests of adherence to uroepithelial cells, catheters and glass.
View Article and Find Full Text PDF