Publications by authors named "Ortwin Hellmig"

Bose-Einstein condensates (BECs) in free fall constitute a promising source for space-borne interferometry. Indeed, BECs enjoy a slowly expanding wave function, display a large spatial coherence and can be engineered and probed by optical techniques. Here we explore matter-wave fringes of multiple spinor components of a BEC released in free fall employing light-pulses to drive Bragg processes and induce phase imprinting on a sounding rocket.

View Article and Find Full Text PDF

Fiber-coupled optical benches are an integral part of many laser systems. The base of such an optical bench is usually a slab of solid material, onto which optical components are fixed. In many environments, the ability to retain high fiber coupling efficiency under mechanical loads is essential.

View Article and Find Full Text PDF

We present an optical element for the separation of superimposed beams that only differ in angle. The beams are angularly resolved and separated by total internal reflection at an air gap between two prisms. As a showcase application, we demonstrate the separation of superimposed beams of different diffraction orders directly behind acousto-optic modulators for an operating wavelength of 800 nm.

View Article and Find Full Text PDF

We present a broadband cw Cr:forsterite laser operating at room temperature with a lasing threshold of 0.8 W that is tunable in the spectral range from 7246 to 8361 cm (1196-1380 nm). This laser is applied for highly sensitive measurements of gaseous absorption inside the cavity.

View Article and Find Full Text PDF

Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose-Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose-Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose-Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch.

View Article and Find Full Text PDF
Article Synopsis
  • Operating ultracold quantum gas experiments outside the lab has been difficult due to unstable optical systems.
  • To improve thermal stability, the study explores the use of nonstandard materials like glass ceramics.
  • The Zerodur-based optical systems show high fiber-coupling efficiencies and pass vibration tests, making them suitable for experiments in atom interferometry and other quantum applications in space.
View Article and Find Full Text PDF

We present a new method to control the power of individual spectral components of a multicolor laser by mirrors with variable air gaps and by a composite resonator configuration. We demonstrate a Pr/Yb-ZBLAN fiber laser with arbitrary spectral composition of three simultaneously emitted components at 492 nm, 520 nm, and 635 nm. With 100 mW pump power at 850 nm launched into the fiber, the total laser output exceeds 10 mW.

View Article and Find Full Text PDF