In this study, we have investigated the pharmacological activity and structural interaction of two novel psychoplastogens, tabernanthalog (TBG) and ibogainalog (IBG) at heterologously-expressed rat (r) and human (h) nicotinic acetylcholine receptors (nAChRs), the rα1β2γ2L γ-aminobutyric acid type A receptor (GABAR), and the human voltage-gated N-type calcium channel (Ca2.2 channel). Both compounds inhibited the nAChRs with the following receptor selectivity: α9α10 > α7 > α3β2 ≅ α3β4, indicating that β2/β4 subunits are relatively less important for their activity.
View Article and Find Full Text PDFThe main objective of this study was to determine the pharmacological activity and molecular mechanism of action of DM506 (3-methyl-1,2,3,4,5,6-hexahydroazepino[4,5-]indole fumarate), a novel ibogamine derivative, at different nicotinic acetylcholine receptor (nAChR) subtypes. The functional results showed that DM506 neither activates nor potentiates but inhibits ACh-evoked currents at each rat nAChR subtype in a non-competitive manner. The receptor selectivity for DM506 inhibition follows the sequence: α9α10 (IC = 5.
View Article and Find Full Text PDFAcrylamide-derived compounds have been previously shown to act as modulators of members of the Cys-loop transmitter-gated ion channel family, including the mammalian GABA receptor. Here we have synthesized and functionally characterized the GABAergic effects of a series of novel compounds (termed "DM compounds") derived from the previously characterized GABA and the nicotinic 7 receptor modulator (E)-3-furan-2-yl--p-tolyl-acrylamide (PAM-2). Fluorescence imaging studies indicated that the DM compounds increase apparent affinity to the transmitter by up to 80-fold in the ternary GABA receptor.
View Article and Find Full Text PDFThe positive allosteric modulators (PAMs) of the α7 nicotinic receptor -(5-Cl-2-hydroxyphenyl)-'-[2-Cl-5-(trifluoromethyl)phenyl]-urea (NS-1738) and ()-3-(furan-2-yl)--(-tolyl)-acrylamide (PAM-2) potentiate the α1β2γ2L GABA receptor through interactions with the classic anesthetic binding sites located at intersubunit interfaces in the transmembrane domain of the receptor. In the present study, we employed mutational analysis to investigate in detail the involvement and contributions made by the individual intersubunit interfaces to receptor modulation by NS-1738 and PAM-2. We show that mutations to each of the anesthetic-binding intersubunit interfaces (β+/α-, α+/β-, and γ+/β-), as well as the orphan α+/γ- interface, modify receptor potentiation by NS-1738 and PAM-2.
View Article and Find Full Text PDFClinical intervention of pain is often accompanied by changes in affective behaviors, so both assays of affective and sensorial aspects of nociception play an important role in the development of novel analgesics. Although positive allosteric modulation (PAM) of α7 nicotinic acetylcholine receptors (nAChRs) has been recognized as a novel approach for the relief of sensorial aspects of pain, their effects on affective components of pain remain unclear. Therefore, we investigated whether PAM-4, a highly selective α7-nAChR PAM, attenuates inflammatory and neuropathic pain, as well as the concomitant depressive/anxiety comorbidities.
View Article and Find Full Text PDFIt is generally assumed that selective serotonin reuptake inhibitors (SSRIs) induce antidepressant activity by inhibiting serotonin (5-HT) reuptake transporters, thus elevating synaptic 5-HT levels and, finally, ameliorates depression symptoms. New evidence indicates that SSRIs may also modulate other neurotransmitter systems by inhibiting neuronal nicotinic acetylcholine receptors (nAChRs), which are recognized as important in mood regulation. There is a clear and strong association between major depression and smoking, where depressed patients smoke twice as much as the normal population.
View Article and Find Full Text PDFThe inhibitory activity of (±)-citalopram on human (h) α3β4, α4β2, and α7 nicotinic acetylcholine receptors (AChRs) was determined by Ca influx assays, whereas its effect on rat α9α10 and mouse habenular α3β4* AChRs by electrophysiological recordings. The Ca influx results clearly establish that (±)-citalopram inhibits (IC's in μM) hα3β4 AChRs (5.1 ± 1.
View Article and Find Full Text PDFThe alkaloids aristoteline (), aristoquinoline (), and aristone () were purified from the leaves of the Maqui tree and chemically characterized by NMR spectroscopy. The pharmacological activity of these natural compounds was evaluated on human (h) α3β4, α4β2, and α7 nicotinic acetylcholine receptors (AChRs) by Ca influx measurements. The results suggest that these alkaloids do not have agonistic, but inhibitory, activity on each receptor subtype.
View Article and Find Full Text PDFThe activity of tricyclic antidepressants (TCAs) at α7 and α9α10 nicotinic acetylcholine receptors (AChRs) as well as at hippocampal α7-containing (i.e., α7*) AChRs is determined by using Ca influx and electrophysiological recordings.
View Article and Find Full Text PDFThe drimane sesquiterpenoids drimenin, cinnamolide, dendocarbin A, and polygodial were purified from the Canelo tree ( Drimys winteri) and chemically characterized by spectroscopic methods. The pharmacological activity of these natural compounds were determined on hα4β2, hα3β4, and hα7 nicotinic acetylcholine receptors (AChRs) by Ca influx measurements. The results established that drimane sesquiterpenoids inhibit AChRs with the following selectivity: hα4β2 > hα3β4 > hα7.
View Article and Find Full Text PDFSenescence is a form of cell cycle arrest induced by stress such as DNA damage and oncogenes. However, while arrested, senescent cells secrete a variety of proteins collectively known as the senescence-associated secretory phenotype (SASP), which can reinforce the arrest and induce senescence in a paracrine manner. However, the SASP has also been shown to favor embryonic development, wound healing, and even tumor growth, suggesting more complex physiological roles than currently understood.
View Article and Find Full Text PDFThe interaction of (±)-bupropion [(±)-BP] with the human (h) α4β2 nicotinic acetylcholine receptor (AChR) was compared to that for its photoreactive analog (±)-2-(N-tert-butylamino)-3'-iodo-4'-azidopropiophenone [(±)-SADU-3-72]. Ca influx results indicated that (±)-SADU-3-72 and (±)-BP inhibit hα4β2 AChRs with practically the same potency. However, (±)-SADU-3-72 binds to the [H]imipramine sites at resting and desensitized hα4β2 AChRs with 3-fold higher affinity compared to that for (±)-BP, which is supported by molecular docking results.
View Article and Find Full Text PDFTo determine the pharmacologic activity of (-)-lobeline between human (h)α4β2 and hα4β4 nicotinic acetylcholine receptors (AChRs), functional and structural experiments were performed. The Ca(2+) influx results established that (-)-lobeline neither actives nor enhances the function of the studied AChR subtypes, but competitively inhibits hα4β4 AChRs with potency ∼10-fold higher than that for hα4β2 AChRs. This difference is due to a higher binding affinity for the [(3)H]cytisine sites at hα4β4 compared to hα4β2 AChRs, which, in turn, can be explained by our molecular dynamics (MD) results: (1) higher stability of (-)-lobeline and its hydrogen bonds within the α4β4 pocket compared to the α4β2 pocket, (2) (-)-lobeline promotes Loop C to cap the binding site at the α4β4 pocket, but forces Loop C to get apart from the α4β2 pocket, precluding the gating process elicited by agonists, and (3) the orientation of (-)-lobeline within the α4β4, but not the α4β2, subpocket, promoted by the t- (or t+) rotameric state of α4-Tyr98, remains unchanged during the whole MD simulation.
View Article and Find Full Text PDFThe kinase mammalian target of rapamycin (mTOR) is a central regulator of cell growth and proliferation that integrates inputs from growth factor receptors, nutrient availability, intracellular ATP (adenosine 5'-triphosphate), and a variety of stressors. Since early works in the mid-1990s uncovered the role of mTOR in stimulating protein translation, this kinase has emerged as a rather multifaceted regulator of numerous processes. Whereas mTOR is generally activated by growth- and proliferation-stimulating signals, its activity can be reduced and even suppressed when cells are exposed to a variety of stress conditions.
View Article and Find Full Text PDFAdult tissue homoeostasis requires continual replacement of cells that are lost due to normal turnover, injury and disease. However, aging is associated with an overall decline in tissue function and homoeostasis, suggesting that the normal regulatory processes that govern self-renewal and regeneration may become impaired with age. Tissue-specific SCs (stem cells) lie at the apex of organismal conservation and regeneration, ultimately being responsible for continued tissue maintenance.
View Article and Find Full Text PDFThis work presents the design and synthesis of a series of novel 2-benzylquinuclidine derivatives, comprising 12 methiodide and 11 hydrochloride salts, and their structural and pharmacological characterization at the human (h) α7 and α4β2 nicotinic receptors (nAChRs). The antagonistic potency of these compounds was tested by Ca(2+) influx assays on cells expressing the hα7 or hα4β2 nAChR subtype. To determine the inhibitory mechanisms, additional radioligand binding experiments were performed.
View Article and Find Full Text PDFThe interaction of (-)-reboxetine, a non-tricyclic norepinephrine selective reuptake inhibitor, with muscle-type nicotinic acetylcholine receptors (AChRs) in different conformational states was studied by functional and structural approaches. The results established that (-)-reboxetine: (a) inhibits (±)-epibatidine-induced Ca(2+) influx in human (h) muscle embryonic (hα1β1γδ) and adult (hα1β1εδ) AChRs in a non-competitive manner and with potencies IC50=3.86±0.
View Article and Find Full Text PDFThe interaction of the selective norepinephrine reuptake inhibitor (-)-reboxetine with the human α4β2 nicotinic acetylcholine receptor (nAChR) in different conformational states was studied by several functional and structural approaches. Patch-clamp and Ca(2+)-influx results indicate that (-)-reboxetine does not activate hα4β2 nAChRs via interaction with the orthosteric sites, but inhibits agonist-induced hα4β2 activation by a noncompetitive mechanism. Consistently, the results from the electrophysiology-based functional approach suggest that (-)-reboxetine may act via open channel block; therefore, it is capable of producing a use-dependent type of inhibition of the hα4β2 nAChR function.
View Article and Find Full Text PDFAlthough stress can suppress growth and proliferation, cells can induce adaptive responses that allow them to maintain these functions under stress. While numerous studies have focused on the inhibitory effects of stress on cell growth, less is known on how growth-promoting pathways influence stress responses. We have approached this question by analyzing the effect of mammalian target of rapamycin (mTOR), a central growth controller, on the osmotic stress response.
View Article and Find Full Text PDFNicotine is the main psychoactive substance present in tobacco, targeting neuronal nicotinic acetylcholine receptors. The main effects of nicotine associated with smoking are nicotinic receptor activation, desensitization, and upregulation, with the subsequent modulation of the mesocorticolimbic dopaminergic system. However, there is a lack of a comprehensive explanation of their roles that effectively makes clear how nicotine dependence might be established on those grounds.
View Article and Find Full Text PDFFunctional and structural approaches were used to examine the inhibitory mechanisms and binding site location for fluoxetine and paroxetine, two serotonin selective reuptake inhibitors, on nicotinic acetylcholine receptors (AChRs) in different conformational states. The results establish that: (a) fluoxetine and paroxetine inhibit h alpha1beta1 gammadelta AChR-induced Ca(2+) influx with higher potencies than dizocilpine. The potency of fluoxetine is increased approximately 10-fold after longer pre-incubation periods, which is in agreement with the enhancement of [(3)H]cytisine binding to resting but activatable Torpedo AChRs elicited by these antidepressants, (b) fluoxetine and paroxetine inhibit the binding of the phencyclidine analog piperidyl-3,4-(3)H(N)]-(N-(1-(2 thienyl)cyclohexyl)-3,4-piperidine to the desensitized Torpedo AChR with higher affinities compared to the resting AChR, and (c) fluoxetine inhibits [(3)H]dizocilpine binding to the desensitized AChR, suggesting a mutually exclusive interaction.
View Article and Find Full Text PDFNicotine is the main psychoactive substance present in tobacco, targeting in the CNS the nicotinic acetylcholine receptors (nAChR). The main effects of nicotine associated with smoking are nAChR upregulation, nAChR desensitization and modulation of the dopaminergic system. However, there is a lack of a comprehensive explanation of their roles that effectively makes clear how nicotine dependence might be established on those grounds.
View Article and Find Full Text PDFBackground: Hypertonicity can perturb cellular functions, induce DNA damage-like responses and inhibit proliferation. The transcription factor NFAT5 induces osmoprotective gene products that allow cells to adapt to sustained hypertonic conditions. Although it is known that NFAT5-deficient lymphocytes and renal medullary cells have reduced proliferative capacity and viability under hypertonic stress, less is understood about the contribution of this factor to DNA damage responses and cell cycle regulation.
View Article and Find Full Text PDF