Publications by authors named "Ortelli S"

Article Synopsis
  • There was an error in the original publication that needs to be addressed.
  • The correction is important for ensuring accurate information.
  • Readers should refer to the updated version to get the correct details.
View Article and Find Full Text PDF
Article Synopsis
  • Understanding how nanoparticles behave in biological environments is essential for creating safer materials, as factors like toxic metal ion release can lead to harmful effects.
  • The study used two Field-Flow Fractionation techniques to analyze the solubility of zinc oxide (ZnO) nanoparticles, discovering that at high concentrations, the stability of nanoparticles is fairly consistent regardless of the separation method, while at lower concentrations, different methods yield varying results.
  • Additionally, the research examined how exposure to fresh water affects the toxicity of both fresh and aged ZnO nanoparticles, finding that the toxic effects are influenced by time, dose, and the age of the nanoparticles, with aged samples generally being less toxic.
View Article and Find Full Text PDF

Re-designing existing nano-silver technologies to optimize efficacy and sustainability has a tangible impact on preventing infections and limiting the spread of pathogenic microorganisms. Advancements in manufacturing processes could lead to more cost-effective and scalable production methods, making nano-silver-based antimicrobial products more accessible in various applications, such as medical devices, textiles, and water purification systems. In this paper, we present a new, versatile, and eco-friendly one-pot process for preparing silver nanoparticles (AgNPs) at room temperature by using a quaternary ammonium salt of hydroxyethyl cellulose (HEC), a green ingredient, acting as a capping and reducing agent.

View Article and Find Full Text PDF

Engineered Nanomaterials (ENMs) have several uses in various industrial fields and are embedded in a myriad of consumer products. However, there is continued concern over the potential adverse health effects and environmental impacts of ENMs due to their unique physico-chemical characteristics. Currently, there are no specific international regulations for various ENMs.

View Article and Find Full Text PDF

In recent years, multifunctional inorganic-organic hybrid materials have been widely investigated in order to determine their potential synergetic, antagonist, or independent effects in terms of reactivity. The aim of this study was to design and characterize a new hybrid material by coupling well-known photocatalytic TiO nanoparticles with a mixture of lipopeptides (LP), to exploit its high binding affinity for metal cations as well as the ability to interact with bacterial membranes and disrupt their integrity. We used both chemical and colloidal synthesis methodologies and investigated how different TiO:LP weight ratios affected colloidal, physicochemical, and functional properties.

View Article and Find Full Text PDF

Magnetic nanoparticles (MNPs) present outstanding properties making them suitable as therapeutic agents for hyperthermia treatments. Since the main safety concerns of MNPs are represented by their inherent instability in a biological medium, strategies to both achieve long-term stability and monitor hazardous MNP degradation are needed. We combined a dynamic approach relying on flow field flow fractionation (FFF)-multidetection with conventional techniques to explore frame-by-frame changes of MNPs injected in simulated biological medium, hypothesize the interaction mechanism they are subject to when surrounded by a saline, protein-rich environment, and understand their behaviour at the most critical point of intravenous administration.

View Article and Find Full Text PDF

Effective particle density is a key parameter for assessing inhalation exposure of engineered NPs in occupational environments. In this paper, particle density measurements were carried out using two different techniques: one based on the ratio between mass and volumetric particle concentrations; the other one based on the ratio between aerodynamic and geometric particle diameter. These different approaches were applied to both field- and laboratory-scale atomization processes where the two target NPs (N-doped TiO, TiON and AgNPs capped with a quaternized hydroxyethylcellulose, AgHEC) were generated.

View Article and Find Full Text PDF

Industrial spray coating processes are known to produce excellent coatings on large surfaces and are thus often used for in-line production. However, they could be one of the most critical sources of worker exposure to ultrafine particles (UFPs). A monitoring campaign at the Witek s.

View Article and Find Full Text PDF

An automatic lab-scaled spray-coating machine was used to deposit Ag nanoparticles (AgNPs) on textile to create antibacterial fabric. The spray process was monitored for the dual purpose of (1) optimizing the process by maximizing silver deposition and minimizing fluid waste, thereby reducing suspension consumption and (2) assessing AgNPs release. Monitoring measurements were carried out at two locations: inside and outside the spray chamber (far field).

View Article and Find Full Text PDF

A new class of bio-nano hybrid catalyst useable in downstream wastewater treatment was developed. We combined the sorption potentialities of Chlorella vulgaris microalgae with the photocatalytic properties of TiO NPs in order to investigate unexplored synergistic effects that could push the algal remediation technology toward a more promising cost-effective balance. We exploited non-living C.

View Article and Find Full Text PDF

In response to the nowadays battle against SARS-CoV-2, we designed a new class of high performant filter media suitable to advance the facemask technology and provide new efficient widespread solutions against virus propagation. By means of the electrospinning technology we developed filter media based on polyvinyl alcohol (PVA) nanofibers doped with AgNPs combining three main performance requirements: high air filtration efficiency to capture nanometer-size particles, low airflow resistance essential to ensure breathability and antimicrobial activity to inactivate aerosolized microorganisms. PVA/AgNPs electrospun nanofibers were produced by electrospinning the dispersion of colloidal silver into the PVA water solution.

View Article and Find Full Text PDF

Biocompatible coating based on bovine serum albumin (BSA) was applied on two different TiO nanoparticles (aeroxide P25 and food grade E171) to investigate properties and stability of resulting TiO@BSA composites, under the final perspective to create a "Safe-by-Design" coating, able to uniform, level off and mitigate surface chemistry related phenomena, as naturally occurring when nano-phases come in touch with proteins enriched biological fluids. The first step towards validating the proposed approach is a detailed characterization of surface chemistry with the quantification of amount and stability of BSA coating deposited on nanoparticles' surfaces. At this purpose, we implemented an orthogonal multi-techniques characterization platform, providing important information on colloidal behavior, particle size distribution and BSA-coating structure of investigated TiO systems.

View Article and Find Full Text PDF

The photocatalytic oxidation of biomass-derived building blocks such as 5-hydroxymethylfurfural (HMF) is a promising reaction for obtaining valuable chemicals and the efficient long-term storage of solar radiation. In this work, we developed innovative TiO-based materials capable of base-free HMF photo-oxidation in water using simulated solar irradiation. The materials were prepared by combining microemulsion and spray-freeze drying (SFD), resulting in highly porous systems with a large surface area.

View Article and Find Full Text PDF

This study was aimed at the production and characterization of coated cotton textiles with luminescent ceramic nanophases doped with cationic Ir(III) tetrazole complexes. We confirmed that SiO nanoparticles (NPs) do not affect the phosphorescent properties of the complexes that maintain their emission (610 and 490 nm). For the first time we transferred the luminescence feature from nanosol to textile surface, highlighting the advantages of using nanosilica as an encapsulating and stabilizing matrix.

View Article and Find Full Text PDF

Length and aspect ratio represent important toxicity determinants of fibrous nanomaterials. We have previously shown that anatase TiO nanofibers (TiO NF) cause a dose-dependent decrease of cell viability as well as the loss of epithelial barrier integrity in polarized airway cell monolayers. Herein we have investigated the impact of fiber shortening, obtained by ball-milling, on the biological effects of TiO NF of industrial origin.

View Article and Find Full Text PDF

The enormous technological relevance of titanium dioxide (TiO) nanoparticles (NPs) and the consequent concerns regarding potentially hazardous effects that exposure during production, use, and disposal can generate, encourage material scientists to develop and validate intrinsically safe design solution (safe-by-design). Under this perspective, the encapsulation in a silica dioxide (SiO) matrix could be an effective strategy to improve TiO NPs safety, preserving photocatalytic and antibacterial properties. In this work, A549 cells were used to investigate the toxic effects of silica-encapsulated TiO having different ratios of TiO and SiO (1:1, 1:3, and 3:1).

View Article and Find Full Text PDF

A strategy for the design of cotton flame retardant coatings is described, exploiting the natural intumescent formulation of nucleic acids, the intrinsic thermal inertia of TiO ceramic phase and the strong affinity that TiO nanoparticles shows for amphiphilic biomolecules (e.g. proteins, nucleic acids) and hydrophilic substrates.

View Article and Find Full Text PDF

Titania (TiO) nanoparticles were surface modified using silica and citrate to implement a 'safe-by-design' approach for managing potential toxicity of titania nanoparticles by controlling surface redox reactivity. DLS and zeta-potential analyses confirmed the surface modification, and electron microscopy and surface area measurements demonstrated nanoscale dimensions of the particles. Electron paramagnetic resonance (EPR) was used to determine the exogenous generation of reactive oxygen species (ROS).

View Article and Find Full Text PDF
Article Synopsis
  • * A novel colloidal heterocoagulation combined with spray-freeze-drying was successfully used to create nanostructured porous TiO₂-SiO₂ mixed-oxides that can encapsulate platinum particles for liquid-phase HMF oxidation.
  • * The researchers compared the photocatalytic activities of a commercial titania and a homemade oxide, assessing how factors like gold presence, base addition, and oxygen levels influenced the resulting products.
View Article and Find Full Text PDF

Nanoscale TiO (nTiO) is manufactured in high volumes and is of potential concern in occupational health. Here, we measured workers exposure levels while ceramic honeycombs were dip coated with liquid photoactive nanoparticle suspension and dried with an air blade. The measured nTiO concentration levels were used to assess process specific emission rates using a convolution theorem and to calculate inhalation dose rates of deposited nTiO particles.

View Article and Find Full Text PDF

Silver nanoparticle-based antimicrobials can promote a long lasting bactericidal effect without detrimental toxic side effects. However, there is not a clear and complete protocol to define and relate the properties of the particles (size, shape, surface charge, ionic content) with their specific activity. In this paper, we propose an effective multi-step approach for the identification of a 'purpose-specific active applicability window' to maximize the antimicrobial activity of medical devices containing silver nanoparticles (Ag NPs) (such as surface coaters), minimizing any consequent risk for human health (safety by design strategy).

View Article and Find Full Text PDF

The rapid dissolution of copper oxide (CuO) nanoparticles (NPs) with release of ions is thought to be one of the main factors modulating their toxicity. Here we assessed the cytotoxicity of a panel of CuO NPs (12 nm ± 4 nm) with different surface modifications, i.e.

View Article and Find Full Text PDF

It is known that the adsorption of bioactive molecules provides engineered nanoparticles (NPs) with novel biological activities. However, the biological effects of the adsorbed molecules may also be modified by the interaction with NP. Bacterial lipopolysaccharide (LPS), a powerful pro-inflammatory compound, is a common environmental contaminant and is present in several body compartments such as the gut.

View Article and Find Full Text PDF

This work deals with the development of a green and versatile synthesis of stable mono- and bi-metallic colloids by means of microwave heating and exploiting ecofriendly reagents: water as the solvent, glucose as a mild and non-toxic reducer and polyvinylpirrolidone (PVP) as the chelating agent. Particle size-control, total reaction yield and long-term stability of colloids were achieved with this method of preparation. All of the materials were tested as effective catalysts in the reduction of p-nitrophenol in the presence of NaBH₄ as the probe reaction.

View Article and Find Full Text PDF
Article Synopsis
  • - Titanium dioxide nanoparticles (TiO NP) are widely used but have been linked to harmful health effects due to their cytotoxic and genotoxic properties.
  • - The FP7 Sanowork project aimed to reduce risks associated with TiO NP through methods like surface modification to minimize their toxic effects on humans.
  • - Tests on both uncoated and coated TiO NP revealed that uncoated ones were harmful, and the modifications did not mitigate their toxic effects; in fact, citrate coating worsened their cytotoxicity and affected DNA methylation.
View Article and Find Full Text PDF