Publications by authors named "Ortaldo J"

Objectives: The relative contributions of inflammatory signalling and sequential oncogenic dysregulation driving liver cancer pathogenesis remain incompletely understood. Lymphotoxin-β receptor (LTβR) signalling is critically involved in hepatitis and liver tumorigenesis. Therefore, we explored the interdependence of inflammatory lymphotoxin signalling and specific oncogenic pathways in the progression of hepatic cancer.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how prenatal interactions between natural killer (NK) cells and alloantigens influence NK cell development, particularly in terms of tolerance versus immunity.
  • Using a mouse model, researchers found that tolerance is achieved by removing NK cells that are reactive to alloantigens but lack corresponding inhibitory receptors.
  • This tolerance mechanism is centered in the bone marrow during the final maturation of NK cells, highlighting a new understanding of how activating receptors play a critical role in developing durable NK cell tolerance.
View Article and Find Full Text PDF

This manuscript describes the early history of NK cell discovery, with emphasis on the events in the first decade of NK cell studies, 1972-1982. The authors highlight some of the earliest and most important observations that would later prove to be milestones in the study of NK cells and their activity.

View Article and Find Full Text PDF

We generated a mouse model with a 162 nt AU-rich element (ARE) region deletion in the 3' untranslated region (3'UTR) of the interferon-gamma (IFN-γ) gene that results in chronic circulating serum IFN-γ levels. Mice homozygous for the ARE deletion (ARE-Del) (-/-) present both serologic and cellular abnormalities typical of patients with systemic lupus erythematosus (SLE). ARE-Del(-/-) mice display increased numbers of pDCs in bone marrow and spleen.

View Article and Find Full Text PDF

The liver is an immunologically unique organ containing tolerogenic dendritic cells (DC) that maintain an immunosuppressive microenvironment. Although systemic IL-12 administration can improve responses to tumors, the effects of IL-12-based treatments on DC, in particular hepatic DC, remain incompletely understood. In this study, we demonstrate systemic IL-12 administration induces a 2-3 fold increase in conventional, but not plasmacytoid, DC subsets in the liver.

View Article and Find Full Text PDF

Immune deficiency immediately following bone marrow transplantation (BMT) increases susceptibility to opportunistic infections as well as tumor relapse. Natural Killer (NK) cells play important roles in the resistance to virally infected and transformed cells. Interleukin (IL)-15 has been shown to be essential for NK cell development and survival.

View Article and Find Full Text PDF

mTOR is a central mediator of cancer cell growth, but it also directs immune cell differentiation and function. On this basis, we had explored the hypothesis that mTOR inhibition can enhance cancer immunotherapy. Here, we report that a combination of αCD40 agonistic antibody and the ATP-competitive mTOR kinase inhibitory drug AZD8055 elicited synergistic antitumor responses in a model of metastatic renal cell carcinoma.

View Article and Find Full Text PDF

The fate of invariant NKT (iNKT) cells following activation remains controversial and unclear. We systemically examined how iNKT cells are regulated following TCR-dependent and -independent activation with α-galactosylceramide (αGC) or IL-18 plus IL-12, respectively. Our studies reveal activation by αGC or IL-18 plus IL-12 induced transient depletion of iNKT cells exclusively in the liver that was independent of caspase 3-mediated apoptosis.

View Article and Find Full Text PDF

Natural killer (NK)-cell alloreactivity is exploited in bone marrow transplantation to improve clinical outcome. Likewise, in solid organ transplantation, it has been recently shown that recipient NK cells may limit alloreactive T-cell responses through their capacity to prevent the persistence of graft-derived allogeneic dendritic cells (DCs). In a model of CD4(+) T cell-mediated allogeneic skin graft rejection, we show that the absence of host NK-cell alloreactivity was characterized by enhanced expansion of alloreactive effector T lymphocytes, including Th2 cells, and massive eosinophilic infiltrates in the rejected tissues.

View Article and Find Full Text PDF

Innate immune responses provide the host with its first line of defense against infections. Signals generated by subsets of lymphocytes, including NK cells, NKT cells, and APC during this early host response determine the nature of downstream adaptive immune responses. In the present study, we have examined the role of innate NK cells in an autoimmune model through the use of primary immunization with the myelin oligodendrocyte glycoprotein peptide to induce experimental autoimmune encephalomyelitis (EAE).

View Article and Find Full Text PDF

Similar to their activity on NK cells, Ly49 molecules play a pivotal role in influencing how NKT cells respond. It is known that Ly49 C/I is an inhibitory receptor capable of down-modulating proliferation, IFN-gamma response, and cytotoxic activity in cells that express it. In a model of peripheral tolerance induced via the eye, we observed that Ly49 C/I-positive, invariant NKT cells were required.

View Article and Find Full Text PDF

Analysis of the NK cell developmental pathway suggests that CD2 expression may be important in regulating NK maturation. To test this hypothesis, we developed mice containing only an inhibitory CD2 molecule by linking the extracellular domain of CD2 to an intracellular immunoreceptor tyrosine-based inhibitory motif (ITIM) motif. Mice containing the CD2 Tg(ITIM) transgene, introduced into a CD2 KO background, have no morphologically detectable lymph nodes, although development of the thymus appears normal.

View Article and Find Full Text PDF

The use of interleukin-18 (IL-18) together with IL-12 induced high levels of IFN-gamma in tumor-bearing mice and regression of liver tumors that was abolished in IFN-gamma((-/-)) mice. Natural killer (NK) and NKT cells were the major producers of IFN-gamma in the livers of mice treated with IL-18 and/or IL-12. Liver NK cells were significantly increased by treatment with IL-18/IL-12, whereas the degree of liver NKT cell TCR detection was diminished by this treatment.

View Article and Find Full Text PDF

The NKG2D receptor on NK cells can recognize a variety of ligands on the tumor cell surface. Using a mouse renal cancer (Renca), we show that NKG2D recognition by NK cells was crucial for their ability to limit tumor metastases in vivo in both liver and lungs using perforin-dependent effector mechanisms. However, for the R331 cell line established from Renca, NKG2D recognition and perforin-dependent lysis played no role in controlling liver metastases.

View Article and Find Full Text PDF

IL-2 is crucial for the production of CD4(+)CD25(+) T regulatory (Treg) cells while important for the generation of effective T cell-mediated immunity. How to exploit the capacity of IL-2 to expand Treg cells, while restraining activation of T effector (Teff) cells, is an important and unanswered therapeutic question. Dexamethasone (Dex), a synthetic glucocorticoid steroid, has been reported to suppress IL-2-mediated activation of Teff cells and increase the proportion of Treg cells.

View Article and Find Full Text PDF

NK cells responses are controlled by inhibitory and activating cell surface receptors. Inhibitory receptors serve to moderate NK activity by dampening cytokine release and cytotoxicity if activating ligands are also triggered by interaction with their receptors on the NK cells. This dampening effect is critical to prevent wide scale self destruction.

View Article and Find Full Text PDF

We observed a remarkable reduction in the frequency and immunosuppressive activity of splenic CD4+CD25+ T cells in C57BL/6 mice with MOG33-55-induced experimental autoimmune encephalomyelitis (EAE). Our study revealed that pertussis toxin (PTx), one component of the immunogen used to induce murine EAE, was responsible for down-regulating splenic CD4+CD25+ cells. Treatment of normal BALB/c mice with PTx in vivo reduced the frequency, suppressive activity and FoxP3 expression by splenic CD4+CD25+ T cells.

View Article and Find Full Text PDF

Cytokines are involved in directing the activation of natural killer (NK) cells. NK cells are involved in the recognition of cells that have been altered; thus they do not recognize specific insults to the host, but when activated, are capable of destroying infected cells directly, as well as promoting the recruitment and response of the other components of the immune system by the release of cytokines and chemokines. It is these properties that have made NK cells a critical part of innate immunity and adaptive immunity, and they play a principal role linking innate and adaptive immunity by the recruitment of an adaptive immune response to an innate immune reaction.

View Article and Find Full Text PDF

Our previous studies have identified mechanisms by which cytokine production, blocked by Ly49G2 receptor cross-linking, can be overridden. In this study we analyzed the regulation of other ITAM-positive receptor signaling on NK, NKT, and T cells and characterized the biochemical pathways involved in this signaling. Our studies demonstrate that cross-linking of NKG2D and NK1.

View Article and Find Full Text PDF

In the present study, we have tested the ability of hydrodynamically delivered IL-2 cDNA to modulate the number and function of murine leukocyte subsets in different organs and in mice of different genetic backgrounds, and we have evaluated effects of this mode of gene delivery on established murine tumor metastases. Hydrodynamic administration of the IL-2 gene resulted in the rapid and transient production of up to 160 ng/ml IL-2 in the serum. The appearance of IL-2 was followed by transient production of IFN-gamma and a dramatic and sustained increase in NK cell numbers and NK-mediated cytolytic activity in liver and spleen leukocytes.

View Article and Find Full Text PDF

Viral infections can strongly stimulate both NK cell and allospecific CD8 T cell responses, and these same effector cells can lyse allogeneic cell lines in vitro. However, the impact of viral infections on the effector systems mediating rejection of allogeneic tissues in vivo has not been fully explored. Using in vivo cytotoxicity assays, we evaluated the effector systems mediating the rejection of CFSE-labeled allogeneic splenocytes after an infection of C57BL/6 (B6) mice with lymphocytic choriomeningitis virus.

View Article and Find Full Text PDF

Previous studies from numerous laboratories have demonstrated that inhibitory class I binding NK receptors dominate functional interactions in vitro. Our previous studies have shown that in addition to lysis, a major consequence of triggering the murine activating NK receptor Ly49D is the expression of cytokines and chemokines. We have recently shown that the activating Ly49D murine NK cell receptor can potently synergize during co-stimulation with IL-12 and IL-18 for selective production of IFN-gamma.

View Article and Find Full Text PDF

Interferon-gamma (IFN-gamma) production and cytolytic activity are 2 major biologic functions of natural killer (NK) cells that are important for innate immunity. We demonstrate here that these functions are compromised in human NK cells treated with peroxisome proliferator-activated-gamma (PPAR-gamma) ligands via both PPAR-gamma-dependent and -independent pathways due to variation in PPAR-gamma expression. In PPAR-gamma-null NK cells, 15-deoxy-Delta(12,14) prostaglandin J(2) (15d-PGJ(2)), a natural PPAR-gamma ligand, reduces IFN-gamma production that can be reversed by MG132 and/or chloroquine, and it inhibits cytolytic activity of NK cells through reduction of both conjugate formation and CD69 expression.

View Article and Find Full Text PDF