Publications by authors named "Ortal Yom-Tov"

The use of buoyant or floating hydrogel tablets is of particular interest in the sustained release of drugs to the stomach. They have an ability to slow the release rates of drugs by prolonging their absorption window in the upper part of the gastrointestinal (GI) tract. In this study we synthesized bioactive hydrogels that have sustainable release rates for drugs in the stomach based on a hydrogel preparation technique that employs emulsifying surfactants.

View Article and Find Full Text PDF

The use of injectable porous hydrogels is of great interest in biomedical applications due to their excellent permeability and ease of integration into sites of surgical intervention. By implementing a method that enables the formation in situ of pores with controllable porosity and pore size, it is possible to synthesize bioactive hydrogels that are tailor-made for specific biomedical applications. An emulsion-templating technique was used to encapsulate oil droplets, which are subsequently leached out of the hydrogel to create the porous structure.

View Article and Find Full Text PDF

Even though inducing structural features on the nanometric scale has been shown to be a powerful tool in tissue engineering, almost all nanostructuring techniques available today cannot be applied to injectable hydrogel scaffolds. The current research explores such a novel technique and its effect on scaffold's properties, cell morphology, and cell-material interaction. Nanostructuring is achieved by covalently binding Pluronic(®) F127 molecules to biosynthetic hydrogels.

View Article and Find Full Text PDF

A novel approach for enhancing protein recognition in molecularly imprinted hydrogel (MIH) is presented. This approach was developed based on the hypothesis that the number of specific binding sites created in the previously described MIH is very small, thus attempts to enhance the capacity result in most cases in additional non-specific binding and loss of selectivity. Thus, blocking the non-specific binding sites could lead to higher capacities and better selectivity.

View Article and Find Full Text PDF