Autophagy-dependent survival relies on a crucial oscillatory response during cellular stress. Although oscillatory behaviour is typically associated with processes like the cell cycle or circadian rhythm, emerging experimental and theoretical evidence suggests that such periodic dynamics may explain conflicting experimental results in autophagy research. In this study, we demonstrate that oscillatory behaviour in the regulation of the non-selective, stress-induced macroautophagy arises from a series of interlinked negative and positive feedback loops within the mTORC1-AMPK-ULK1 regulatory triangle.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
The modulation of autophagy plays a dual role in tumor cells, with the potential to both promote and suppress tumor proliferation. In order to gain a deeper understanding of the nature of autophagy, we have developed a chemical reaction kinetic model of autophagy and apoptosis based on the mass action kinetic models that have been previously described in the literature. It is regrettable that the authors did not provide all of the information necessary to reconstruct their model, which made their simulation results irreproducible.
View Article and Find Full Text PDFDynamic regulation of the cellular proteome is mainly controlled in the endoplasmic reticulum (ER). Accumulation of misfolded proteins due to ER stress leads to the activation of unfolded protein response (UPR). The primary role of UPR is to reduce the bulk of damages and try to drive back the system to the former or a new homeostatic state by autophagy, while an excessive level of stress results in apoptosis.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) plays a crucial role in cellular homeostasis. When ER stress is generated, an autophagic self-digestive process is activated to promote cell survival; however, cell death is induced in the case of excessive levels of ER stress. The aim of the present study was to investigate the effect of a natural compound called sulforaphane (SFN) upon ER stress.
View Article and Find Full Text PDFMacroautophagy/autophagy is a highly-conserved catabolic procss eliminating dysfunctional cellular components and invading pathogens. Autophagy malfunction contributes to disorders such as cancer, neurodegenerative and inflammatory diseases. Understanding autophagy regulation in health and disease has been the focus of the last decades.
View Article and Find Full Text PDFOne of the main inducers of autophagy-dependent self-cannibalism, called ULK1, is tightly regulated by the two sensor molecules of nutrient conditions and energy status, known as mTOR and AMPK kinases, respectively. Recently, we developed a freely available mathematical model to explore the oscillatory characteristic of the AMPK-mTOR-ULK1 regulatory triangle. Here, we introduce a systems biology analysis to explain in detail the dynamical features of the essential negative and double-negative feedback loops and also the periodic repeat of autophagy induction upon cellular stress.
View Article and Find Full Text PDFThe circadian clock governs rhythmic cellular functions by driving the expression of a substantial fraction of the genome and thereby significantly contributes to the adaptation to changing environmental conditions. Using the circadian model organism we show that molecular timekeeping is robust even under severe limitation of carbon sources, however, stoichiometry, phosphorylation and subcellular distribution of the key clock components display drastic alterations. Protein kinase A, protein phosphatase 2 A and glycogen synthase kinase are involved in the molecular reorganization of the clock.
View Article and Find Full Text PDFAutophagy-dependent cellular survival is tightly regulated by both kinases and phosphatases. While mTORC1 inhibits autophagy by phosphorylating ULK1, PP2A is able to remove this phosphate group from ULK1 and promotes the key inducer of autophagosome formation. However, ULK1 inhibits mTORC1, mTORC1 is able to down-regulate PP2A.
View Article and Find Full Text PDFEndoplasmic reticulum (ER) stress-dependent accumulation of incorrectly folded proteins leads to activation of the unfolded protein response. The role of the unfolded protein response (UPR) is to avoid cell damage and restore the homeostatic state by autophagy; however, excessive ER stress results in apoptosis. Here we investigated the ER stress-dependent feedback loops inside one of the UPR branches by focusing on PERK-induced ATF4 and its two targets, called CHOP and GADD34.
View Article and Find Full Text PDFWe describe a precision medicine workflow, the integrated single nucleotide polymorphism network platform (iSNP), designed to determine the mechanisms by which SNPs affect cellular regulatory networks, and how SNP co-occurrences contribute to disease pathogenesis in ulcerative colitis (UC). Using SNP profiles of 378 UC patients we map the regulatory effects of the SNPs to a human signalling network containing protein-protein, miRNA-mRNA and transcription factor binding interactions. With unsupervised clustering algorithms we group these patient-specific networks into four distinct clusters driven by PRKCB, HLA, SNAI1/CEBPB/PTPN1 and VEGFA/XPO5/POLH hubs.
View Article and Find Full Text PDFThe COVID-19 pandemic caused by SARS-CoV-2 has resulted in an urgent need for identifying potential therapeutic drugs. In the first half of 2020 tropic antimalarial drugs, such as chloroquine (CQ) or hydroxochloroquine (HCQ) were the focus of tremendous public attention. In the initial periods of the pandemic, many scientific results pointed out that CQ/HCQ could be very effective for patients with severe COVID.
View Article and Find Full Text PDFThe Warburg effect has been considered a potential therapeutic target to fight against cancer progression. In KRAS mutant cells, PKM2 (pyruvate kinase isozyme M2) is hyper-activated, and it induces GLUT1 expression; therefore, KRAS has been closely involved in the initiation of Warburg metabolism. Although mTOR (mammalian target of rapamycin), a well-known inhibitor of autophagy-dependent survival in physiological conditions, is also activated in KRAS mutants, many recent studies have revealed that autophagy becomes hyper-active in KRAS mutant cancer cells.
View Article and Find Full Text PDFAlthough autophagy is a type of programmed cell death, it is also essential for cell survival upon tolerable level of various stress events. For the cell to respond adequately to an external and/or internal stimulus induced by cellular stress, autophagy must be controlled in a highly regulated manner. By using systems biology techniques, here we explore the dynamical features of autophagy induction.
View Article and Find Full Text PDFAutophagy is an intracellular digestive process, which has a crucial role in maintaining cellular homeostasis by self-eating the unnecessary and/or damaged components of the cell at various stress events. ULK1, one of the key elements of autophagy activator complex, together with the two sensors of nutrient and energy conditions, called mTORC1 and AMPK kinases, guarantee the precise function of cell response mechanism. We claim that the feedback loops of AMPK-mTORC1-ULK1 regulatory triangle determine an accurate dynamical characteristic of autophagic process upon cellular stress.
View Article and Find Full Text PDFPersistent oxidative stress is a common feature of cancer cells, giving a specific weapon to selectively eliminate them. Ascorbate in pharmacological concentration can contribute to the suspended formation of hydroxyl radical the Fenton reaction; thus, it can be an important element of the oxidative stress therapy against cancer cells. The main components of ascorbate-induced cell death are DNA double-strand breaks the production of hydroxyl radical and ATP depletion due to the activation of poly (ADP-ribose) polymerase 1.
View Article and Find Full Text PDFScientific results have revealed that autophagy is able to promote cell survival in response to endoplasmic reticulum (ER) stress, while drastic events result in apoptotic cell death. Here, we analyse the important crosstalk of life-and-death decisions from a systems biological perspective by studying the regulatory modules of the unfolded protein response (UPR). While a double-negative loop between autophagy and apoptosis inducers is crucial for the switch-like characteristic of the stress response mechanism, a positive feedback loop between ER stress sensors is also essential.
View Article and Find Full Text PDFCellular homeostasis is controlled by an evolutionary conserved cellular digestive process called autophagy. This mechanism is tightly regulated by the two sensor elements called mTORC1 and AMPK. mTORC1 is one of the master regulators of proteostasis, while AMPK maintains cellular energy homeostasis.
View Article and Find Full Text PDFOxidative stress results in activation of several signal transduction pathways controlled by the PERK-substrate NRF2 (nuclear factor erythroid 2-related factor 2); meanwhile the ongoing cell division cycle has to be blocked. It has been recently shown that Cyclin D1 got immediately down-regulated via PERK pathway in response to oxidative stress leading to cell cycle arrest. However, the effect of NRF2 on cell cycle regulation has not been explored yet.
View Article and Find Full Text PDFPharmacologic ascorbate induced cell death and ferroptosis share common features such as iron dependency, production of ROS, lipid peroxidation, caspase independency and the possible involvement of autophagy. These observations lead us to hypothesize that ferroptosis may also be involved in cancer cell death due to pharmacologic ascorbate treatment. Thus cell death of HT-1080 cell line was induced by ferroptosis inducers and pharmacologic ascorbate then the mechanism of cell death was compared.
View Article and Find Full Text PDFNF-E2-related factor 2 (NRF2) transcription factor has a fundamental role in cell homeostasis maintenance as one of the master regulators of oxidative and electrophilic stress responses. Previous studies have shown that a regulatory connection exists between NRF2 and autophagy during reactive oxygen species-generated oxidative stress. The aim of the present study was to investigate how autophagy is turned off during prolonged oxidative stress, to avoid overeating and destruction of essential cellular components.
View Article and Find Full Text PDFThe maintenance of cellular homeostasis is largely dependent on the ability of cells to give an adequate response to various internal and external stimuli. We have recently proposed that the life-and-death decision in endoplasmic reticulum (ER) stress response is defined by a crosstalk between autophagy, apoptosis, and mTOR-AMPK pathways, where the transient switch from autophagy-dependent survival to apoptotic cell death is controlled by GADD34. The aim of the present study was to investigate the role of epigallocatechin-3-gallate (EGCG), the major polyphenol of green tea, in promoting autophagy-dependent survival and to verify the key role in connecting GADD34 with mTOR-AMPK pathways upon prolonged ER stress.
View Article and Find Full Text PDFAlthough the primary role of autophagy-dependent cellular self-eating is cytoprotective upon various stress events (such as starvation, oxidative stress, and high temperatures), sustained autophagy might lead to cell death. A transcription factor called NRF2 (nuclear factor erythroid-related factor 2) seems to be essential in maintaining cellular homeostasis in the presence of either reactive oxygen or nitrogen species generated by internal metabolism or external exposure. Accumulating experimental evidence reveals that oxidative stress also influences the balance of the 5' AMP-activated protein kinase (AMPK)/rapamycin (mammalian kinase target of rapamycin or mTOR) signaling pathway, thereby inducing autophagy.
View Article and Find Full Text PDFPlant Physiol Biochem
May 2018
Ostreococcus tauri is the smallest free-living unicellular organism with one copy of each core cell cycle genes in its genome. There is a growing interest in this green algae due to its evolutionary origin. Since O.
View Article and Find Full Text PDFIn response to developmental and environmental conditions, cells exit the mitotic cell cycle and enter the meiosis program to generate haploid gametes from diploid germ cells. Once cells decide to enter the meiosis program they become irreversibly committed to the completion of meiosis irrespective of the presence of cue signals. How meiotic entry and commitment occur due to the dynamics of the regulatory network is not well understood.
View Article and Find Full Text PDF